Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (4): 1474-1482.doi: 10.16285/j.rsm.2017.2233

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of the fracture characteristics of granite under CO2 injection condition

XU Chen-yu1, 2, BAI Bing2, LIU Ming-ze2   

  1. 1. School of Civil Engineering and Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2017-11-09 Online:2019-04-11 Published:2019-04-25
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41672252), the Supporting Program of the “Twelfth Five-Year Plan” for Sci. & Tech. Research of China (2014BAC18B01) and the National Key Research and Development Plan (CERC) (2016YFE0102500).

Abstract: The hydraulic fracturing (HF) behavior under CO2 condition is a key scientific issue in CO2-enhanced geothermal system project. The granite specimen was taken from the quarry in Zhangzhou, Fujian province. HF experiments were conducted to investigate the effects of CO2 and H2O on the HF process and crack propagation by using a new independently developed hollow cylinder. This study reveals that with the decrease of the viscosity of the fracturing fluid, a greater number and more sinuous microcrack branches form in the fracture process. This indicates that CO2 fracturing may be more conducive to the formation of the crack network, which helps to increase the heat exchange efficiency in the CO2-EGS projects. The fracture pressure of the specimen decreases with decreasing the viscosity of the fracturing fluid, which leads to the safe operation of the injection well with a lower value. The experimental results consist with the interaction mechanism of fluid rock from the convective heat transfer perspective, and its accuracy is verified.

Key words: fracture characteristics, heat transfer coefficient, fluid viscosity, hydraulic fracturing, CO2-EGS

CLC Number: 

  • TU 454
[1] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[2] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[3] WU Jin-wen, FENG Zi-jun, LIANG Dong, BAO Xian-kai, . Characteristics of granite failure by injecting high-temperature-vapour under uniaxial stress [J]. Rock and Soil Mechanics, 2019, 40(7): 2637-2644.
[4] ZHANG Fan, MA Geng, FENG Dan, . Hydraulic fracturing simulation test and fracture propagation analysis of large-scale coal rock under true triaxial conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1890-1897.
[5] ZHANG Wei, QU Zhan-qing, GUO Tian-kui, SUN Jiang. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress [J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008.
[6] ZHANG Bo, LI Yao, YANG Xue-ying, ZHU Piao-yang, ZHU Chun-di, LIU Zi-hao, LIU Wen-jie, LUO Zhi-heng, . Design and application of a hydraulic pressure supply device for hydraulic fracturing experiments [J]. Rock and Soil Mechanics, 2019, 40(5): 2022-2028.
[7] WANG Pu, WANG Chen-hu, YANG Ru-hua, HOU Zhen-yang, WANG Hong, . Preliminary investigation on the deep rock stresses prediction method based on stress polygon and focal mechanism solution [J]. Rock and Soil Mechanics, 2019, 40(11): 4486-4496.
[8] LI Dong, LU Yi-yu, RONG Yao, ZHOU Dong-ping, GUO Chen-ye, ZHANG Shang-bin, ZHANG Cheng-ke, . Rapid uncovering seam technologies for large cross-section gas tunnel excavated through coal seams using directional hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(1): 363-369.
[9] LIU Yan-zhang, GUO Yun-lin , HUANG Shi-bing , CAI Yuan-tian , LI Kai-bing , WANG Liu-bao , LI Wei , . Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018, 39(S2): 62-71.
[10] LIANG Tian-cheng, LIU Yun-zhi, FU Hai-feng, YAN Yu-zhong, XIU Nai-ling, WANG Zhen. Experimental study of hydraulic fracturing simulation for multistage circulating pump injection [J]. , 2018, 39(S1): 355-361.
[11] LI Dong-qi, LI Zong-li, Lü Cong-cong. Analysis of fracture strength of rock mass considering fissure additional water pressure [J]. , 2018, 39(9): 3174-3180.
[12] CHENG Wan, JIANG Guo-sheng, ZHOU Zhi-dong, WEI Zi-jun, ZHANG Yu, WANG Bing-hong, ZHAO Lin, . Fracture competition of simultaneous propagation of multiple hydraulic fractures in a horizontal well [J]. Rock and Soil Mechanics, 2018, 39(12): 4448-4456.
[13] JIANG Ting-ting, ZHANG Jian-hua, HUANG Gang, . Experimental study of fracture geometry during hydraulic fracturing in coal [J]. , 2018, 39(10): 3677-3684.
[14] YAN Cheng-zeng. A new two-dimensional FDEM-flow method for simulating hydraulic fracturing [J]. , 2017, 38(6): 1789-1796.
[15] WANG Cheng-hu, XING Bo-rui,. A new theory and application progress of the modified hydraulic test on pre-existing fracture to determine in-situ stresses [J]. , 2017, 38(5): 1289-1297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!