›› 2012, Vol. 33 ›› Issue (11): 3237-3242.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Acoustic emission characteristics of sandstone after high temperature under uniaxial compression

WU Gang1, 2,WANG De-yong3,ZHAI Song-tao3   

  1. 1. Chinese Underwater Technology Institute, Shanghai Jiaotong University, Shanghai 200231, China; 2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 3. Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2012-03-21 Online:2012-11-12 Published:2012-11-14

Abstract: The acoustic emission evolution process of Jiaozuo sandstone with 20 ℃-1 200 ℃ temperatures is studied using acoustic emission (AE) test under uniaxial compression. By analyzing AE parameters and the mechanical properties of sandstone after high temperature, the AE characteristics of sandstone under different temperatures and different loading stages are explored. The results show that temperature has little effect on the acoustic emission of sandstone when temperature is less than 400 ℃. The AE ring-down accumulation counts change rapidly both at about 100 ℃ and 600 ℃ temperatures. It is shown that 100 ℃ is the threshold of crack growth for sandstone; and the internal structure composition of sandstone changes after 600 ℃; and acoustic emission phenomenon is very obvious. From 600 ℃ to 1 200 ℃, obvious brittle-plastic transition appears in sandstone. At the same time, the emergence of acoustic emission signals is delayed and the growth rate of acoustic emission signals rises because of high temperature. Sandstone releases intensive acoustic emission signals and presents plastic failure characteristics after 1 200 ℃.

Key words: high temperature, sandstone, uniaxial compression, acoustic emission

CLC Number: 

  • TU 45
[1] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
[2] ZHANG Yan-bo, SUN Lin, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, LIU Xiang-xin, . Experimental study of time-frequency characteristics of acoustic emission key signals during granite fracture [J]. Rock and Soil Mechanics, 2020, 41(1): 157-165.
[3] ZHENG Kun, MENG Qing-shan, WANG Ren, YU Ke-fu, . Experimental study of acoustic emission characteristics of coral skeleton limestone under triaxial compression [J]. Rock and Soil Mechanics, 2020, 41(1): 205-213.
[4] LOU Ye, ZHANG Guang-qing. Experimental analysis of fracturing fluid viscosity on cyclic hydraulic fracturing [J]. Rock and Soil Mechanics, 2019, 40(S1): 109-118.
[5] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[6] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[7] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[8] YANG Dao-xue, ZHAO Kui, ZENG Peng, ZHUO Yu-long, . Numerical simulation of unknown wave velocity acoustic emission localization based on particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2019, 40(S1): 494-502.
[9] ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, LI Xiao-feng, . Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique [J]. Rock and Soil Mechanics, 2019, 40(S1): 63-72.
[10] DING Chang-dong, ZHANG Yang, YANG Xiang-tong, HU Da-wei, ZHOU Hui, LU Jing-jing, . Permeability evolution of tight sandstone under high confining pressure and high pore pressure and its microscopic mechanism [J]. Rock and Soil Mechanics, 2019, 40(9): 3300-3308.
[11] HOU Gong-yu, JING Hao-yong, LIANG Jin-ping, ZHANG Guang-dong, TAN Jin-xin, ZHANG Yong-kang, YANG Xi, . Experimental study of deformation and acoustic emission characteristics of rectangular roadway under different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(9): 3309-3318.
[12] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[13] SONG Yi-min, DENG Lin-lin, LÜ Xiang-feng, XU Hai-liang, ZHAO Ze-xin, . Study of acoustic emission characteristics and deformation evolution during rock frictional sliding [J]. Rock and Soil Mechanics, 2019, 40(8): 2899-2906.
[14] CHENG Ai-ping, ZHANG Yu-shan, DAI Shun-yi, DONG Fu-song, ZENG Wen-xu, LI Dan-feng, . Space-time evolution of acoustic emission parameters of cemented backfill and its fracture prediction under uniaxial compression [J]. Rock and Soil Mechanics, 2019, 40(8): 2965-2974.
[15] ZHANG Chuan-qing, LIU Zhen-jiang, ZHANG Chun-sheng, ZHOU Hui, GAO Yang, HOU Jing, . Experimental study on rupture evolution and failure characteristics of aphanitic basalt [J]. Rock and Soil Mechanics, 2019, 40(7): 2487-2496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YU Li-yuan,LI Shu-cai,XU Bang-shu. Stability analysis of Zhoushan subsea tunnel with drill-and-blast construction method[J]. , 2009, 30(11): 3453 -3459 .
[2] YU Jun, TONG Li-yuan, LIU Song-yu, TANG Jin-song. Simulation and analysis of controlling water in tunnel based on preferred plane theory[J]. , 2009, 30(12): 3825 -3830 .
[3] YANG Hui, CAO Ping, JIANG Xue-liang. Micromechanical model for equivalent crack propagation under chemical corrosion of water-rock interaction[J]. , 2010, 31(7): 2104 -2110 .
[4] LIU Qi,LU Yao-ru,ZHANG Feng-e,XIONG Kang-ning. Study of simulation experiment for carbonate rocks dissolution under hydrodynamic pressure[J]. , 2010, 31(S1): 96 -101 .
[5] ZHANG Peng, CHEN Jian-ping, QIU Dao-hong. Evaluation of tunnel surrounding rock quality with extenics based on rough set[J]. , 2009, 30(1): 246 -250 .
[6] LI Xiang,JIA Ming-tao,WANG Li-guan,BAI Yun-fei. Study of orefragment size prediction in block caving based on Monte Carlo stochastic simulation[J]. , 2009, 30(4): 1186 -1190 .
[7] YIN Sheng-bin, DING Hong-yan. Time series-projection pursuit regression model for predicting surface settlement during pit excavation[J]. , 2011, 32(2): 369 -374 .
[8] HUO min, CHEN Jian-bing, ZHANG jin-zhao. Foundation clearing test study of highway subgrade in patchy permafrost regions of Northeast China[J]. , 2009, 30(S2): 263 -268 .
[9] JIANG Xin-liang,LI Lin,YUAN Jie,YIN Jia-shun. Dynamic analysis of strata horizontal displacements induced by shield construction of deep tunnel[J]. , 2011, 32(4): 1186 -1192 .
[10] HE Hu ,DOU Lin-ming ,GONG Si-yuan ,ZHOU Peng ,XUE Zai-jun ,HE Jiang. Study of acoustic emission monitoring technology for rockburst[J]. , 2011, 32(4): 1262 -1268 .