›› 2012, Vol. 33 ›› Issue (S2): 311-313.

• Geotechnical Engineering • Previous Articles     Next Articles

Determination of ground vibration load caused by rail transport

CHEN Shi-hai1, 2, QI Gui-feng1, 2, BI Wei-guo1, 2   

  1. 1. College of Architecture and Civil Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266510, China; 2. Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(SDUST), Shandong University of Science and Technology, Qingdao, Shandong 266510, China
  • Received:2012-07-12 Online:2012-11-22 Published:2012-12-11

Abstract: With the rapid development of the construction of rail transport, the vibration caused by the operation of rail transport is causing an increasingly concern. In order to study the characteristics of ground vibration load and its law of propagation, we set the rails, sleepers, ballast bed and roadbed above the ground as a whole according to the structure of the train and characteristics of the structure of ballast bed, and build a two-line spring model consisting of a car-bogies-ballast bed structures to calculate the ground vibration load. By analyzing the test data about the velocity of ground vibration and the vibration of the train itself, we can get the number expressions of the ground vibration load by using fast Fourier transform (FFT) program to analyze the ground vibration load data for Fourier transform.

Key words: rail transport, ground vibration, load, Fourier transform, power spectrum

CLC Number: 

  • U412
[1] TU Yuan, WANG Kui-hua, ZHOU Jian, HU An-feng, . Application of effective stress method and effective consolidation stress method for strength calculation in preloading ground [J]. Rock and Soil Mechanics, 2020, 41(2): 645-654.
[2] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[3] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[4] MA Wei-jia, CHEN Guo-xing, WU Qi, . Experimental study on liquefaction resistance of coral sand under complex loading conditions [J]. Rock and Soil Mechanics, 2020, 41(2): 535-542.
[5] LI Xiao-xuan, LI Tao, PENG Li-yun, . Elastoplastic two-surface model for unsaturated cohesive soils under cyclic loading with controlled matric suction [J]. Rock and Soil Mechanics, 2020, 41(2): 552-560.
[6] DENG Tao, LIN Cong-yu, LIU Zhi-peng, HUANG Ming, CHEN Wen-jing, . A simplified elastoplastic method for laterally loaded single pile with large displacement [J]. Rock and Soil Mechanics, 2020, 41(1): 95-102.
[7] QIN Yu-lan, ZOU Xin-jun, CAO Xiong. Internal forces and deformations of a single pile in uniform sand under combined action of horizontal harmonic load and torque [J]. Rock and Soil Mechanics, 2020, 41(1): 147-156.
[8] SHI Li, HU Dong-dong, CAI Yuan-qiang, PAN Xiao-dong, SUN Hong-lei, . Preliminary study of real-time pore water pressure response and reinforcement mechanism of air-booster vacuum preloading treated dredged slurry [J]. Rock and Soil Mechanics, 2020, 41(1): 185-193.
[9] SUN Lai-bin, XIAO Shi-guo, . Evaluation method for elastic foundation coefficient of finite downslope soil against loading segment of stabilizing piles [J]. Rock and Soil Mechanics, 2020, 41(1): 278-284.
[10] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[11] REN Qing-yang, ZHANG Huang-mei, LIU Jia-shen, . Rheological properties of mudstone under two unloading paths in experiments [J]. Rock and Soil Mechanics, 2019, 40(S1): 127-134.
[12] ZHAI Ming-lei, GUO Bao-hua, WANG Chen-lin, JIAO Feng, . Compression-shear failure characteristics of rock with penetrated fracture under normal unloading condition [J]. Rock and Soil Mechanics, 2019, 40(S1): 217-223.
[13] QIN Wei, DAI Guo-liang, MA Li-zhi, PEI Ming-hai, WANG Lei, ZHU Guang-yao, GAO Bo, . In-situ static loading tests of prestressed high strength concrete (PHC) pile in coral strata [J]. Rock and Soil Mechanics, 2019, 40(S1): 381-389.
[14] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[15] XIE Yun-fei, CHI Shi-chun, ZHOU Xiong-xiong, . Research on optimization design method of large-scale pile-raft foundation in complex environment [J]. Rock and Soil Mechanics, 2019, 40(S1): 486-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Zhen-jun,WANG Shui-lin,TANG Hua,WANG Wei,GE Xiu-run. A new optimization approach for slope reliability analysis[J]. , 2010, 31(3): 713 -718 .
[2] LI Xin-ping, DAI Yi-fei, LIU Jin-huan, ZENG Ming , LIU Li-sheng, ZHANGKai-g. Test study and numerical simulation analysis of explosion in steel tubes[J]. , 2009, 30(S1): 5 -9 .
[3] CAO Wen-gui,ZHAO Heng,ZHANG Yong-jie,ZHANG Ling. Strain softening and hardening damage constitutive model for rock considering effect of volume change and its parameters determination method[J]. , 2011, 32(3): 647 -654 .
[4] WANG Ying-ming, LI Xiao-lun. Introduction to treatment of collapsible loess subgrade for Shaanxi section of Zhengzhou-Xi’an passenger dedicated railway line[J]. , 2009, 30(S2): 283 -286 .
[5] ZHANG Ping, FANG Ying-guang, YAN Xiao-qing, HE Zhi-wei1. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. , 2011, 32(S1): 388 -0391 .
[6] XU Fu-le ,WANG En-yuan ,SONG Da-zhao ,SONG Xiao-yan ,WEI Ming-yao. Long-range correlation and multifractal distribution of acoustic emission of coal-rock[J]. , 2011, 32(7): 2111 -2116 .
[7] NIU Lei, YAO Yang-ping, CUI Wen-jie, WAN Zheng. Three-dimensional method for constitutive relationship of overconsolidation unsaturated soil[J]. , 2011, 32(8): 2341 -2345 .
[8] ZHANG An-bing , GAO Jing-xiang , ZHANG Zhao-jiang. Deformation analysis and prediction of building above old mine goaf based on multiscale method[J]. , 2011, 32(8): 2423 -2428 .
[9] HSIAO Fu-yuan , WANG Chien-li , SHAO How-jei. Mechanical parameters estimation and tunnel deformation study for brittle rock under high overburden condition[J]. , 2011, 32(S2): 109 -114 .
[10] LIU Feng-yin , ZHANG Zhao , ZHOU Dong , ZHAO Xu-guang , ZHU Liang. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. , 2011, 32(S2): 132 -136 .