Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (S1): 459-467.doi: 10.16285/j.rsm.2018.1920

• Numerical Analysis • Previous Articles     Next Articles

Mechanical characteristics analysis of granite under unloading conditions

JIN Ai-bing1, 2, LIU Jia-wei1, 2, ZHAO Yi-qing1 , 2, WANG Ben-xin1, 2, SUN Hao1, 2, WEI Yu-dong1, 2   

  1. 1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China; 2. Key Laboratory of Ministry of Education for Efficient Mining and Safety of Metal Mine, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2018-10-15 Online:2019-08-01 Published:2019-08-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51674015) and Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(SHJT-17-42.1).

Abstract: Excavation in the rock mass engineering is inevitably associated with the rock mass unloading. In this paper, the granite is selected as the test material, the rupture characteristics of the granite under linear unloading conditions are studied experimentally. The rapid dilation in the radial direction and the enhancement of the plasticity are found. Furthermore, the FJM (flat joint model) in the PFC (particle flow code), is applied to simulate the mechanical properties of the granite under unloading conditions. A new “stress/time step” unloading method, which can easily execute the simulation of the nonlinear unloading behavior, is used considering that the excavation of the rock mass in the practical engineering is mostly characterized as the nonlinear unloading behavior. Numerical simulation results show that the granite is seriously damaged when the axial pressure is increased and the confining pressure is unloaded. The load capacity was decreased sharply and no residual strength is found. As the initial confining pressure increases, the failure mode is transformed from the splitting to the shear failure. The faster the unloading speed, the slower the crack propagation is found. The research results can provide the reference for the study of the mechanical behavior and the practical engineering under unloading conditions.

Key words: granite, unloading rock mass, mechanical characteristic, numerical simulation

CLC Number: 

  • TU 452
[1] XI Bao-ping, WU Yang-chun, WANG Shuai, XIONG Gui-ming, ZHAO Yang-sheng, . Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures [J]. Rock and Soil Mechanics, 2020, 41(S1): 83-94.
[2] ZHANG Yan-bo, WU Wen-rui, YAO Xu-long, LIANG Peng, TIAN Bao-zhu, HUANG Yan-li, LIANG Jing-long, . Acoustic emission, infrared characteristics and damage evolution of granite under uniaxial compression [J]. Rock and Soil Mechanics, 2020, 41(S1): 139-146.
[3] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[4] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[5] LIU Xin-yu, ZHANG Xian-wei, YUE Hao-zhen, KONG Ling-wei, XU Chao, . SHPB tests on dynamic impact behavior of granite residual soil [J]. Rock and Soil Mechanics, 2020, 41(6): 2001-2008.
[6] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[7] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[8] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[9] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[10] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[11] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[12] ZHANG Feng-rui, JIANG An-nan, YANG Xiu-rong, SHEN Fa-yi. Experimental and model research on shear creep of granite under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2020, 41(2): 509-519.
[13] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[14] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[15] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!