›› 2013, Vol. 34 ›› Issue (1): 128-132.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on prediction method of soil-water characteristic curve of unsaturated soils

CHEN Hui1,WEI Chang-fu2,CHEN Fang-fang3,ZENG Jin-feng1   

  1. 1. Department of Civil Engineering, Jiangxi University of Technology, Nanchang 330098, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Engineering Training Center, Jiangxi University of Technology, Nanchang 330098, China
  • Received:2011-05-26 Online:2013-01-10 Published:2013-01-10

Abstract: Based on the non-equilibrium flow theory of multiphase porous media, the thermodynamic mixed theoretical model is proposed by Wei et al[1]. According to the model, the dynamic water-soil characteristic curve of unsaturated soil, which describes the incremental relationship between capillary pressure and saturation, is deduced. Within the context of the dynamic water-soil characteristic curve, an evolution equation of saturation in an unsaturated sample is developed. The equation describes well the variation of saturation with time in a multistep transient outflow experiment provided that the deformation of the matric of the unsaturated sample is ignored. On the basis of the evolution equation and the characteristic of the multistep transient outflow experiment, a new predicted method is proposed to determine the soil-water characteristic curve. For the low liquid limit silt and the low liquid limit clay, by comparing the theoretical simulation with experimental data in the multistep transient outflow experiment, it is shown that the saturation evolution equation can very well describe the constitutive relationship between saturation and time provided that the incremental step of matric suction is small. In addition, the calculated results of the soil-water characteristic curve agree well with the measured results of that measured by the laboratory combined system.

Key words: non-equilibrium flow theory, multiphase porous media, multistep transient outflow experiment, soil-water characteristic curve

CLC Number: 

  • TU 411
[1] CHEN Ren-peng, WANG Peng-fei, LIU Peng, CHENG Wei, KANG Xin, YANG Wei, . Experimental study on soil-water characteristic curves of subgrade coal gangue filler [J]. Rock and Soil Mechanics, 2020, 41(2): 372-378.
[2] TAO Gao-liang, WU Xiao-kang, GAN Shi-chao, XIAO Heng-lin, MA Qiang, LUO Chen-chen, . Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios [J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.
[3] ZHENG Guo-feng, GUO Xiao-xia, SHAO Long-tan, . Experimental verification of an unsaturated shear strength criterion based on the state surface expression [J]. Rock and Soil Mechanics, 2019, 40(4): 1441-1448.
[4] LI Ming-yu, SUN Wen-jing. Water retention behaviour of biochar-amended clay and its influencing mechanism [J]. Rock and Soil Mechanics, 2019, 40(12): 4722-4730.
[5] TAO Gao-liang, LI Jin, ZHUANG Xin-shan, XIAO Heng-lin, CUI Xi-lin, XU Wei-sheng. Determination of the residual water content of SWCC based on the soil moisture evaporation properties and micro pore characteristics [J]. , 2018, 39(4): 1256-1262.
[6] TAO Gao-liang, BAI Liang, YUAN Bo, GAN Shi-chao. Study of relationship between soil-water characteristic curve and NMR curve [J]. , 2018, 39(3): 943-948.
[7] LI Cheng-sheng, KONG Ling-wei, BAI Wei, AN Ran, LI Tian-guo, . Hysteresis model of soil-water characteristic curve [J]. , 2018, 39(2): 598-604.
[8] LIU Xing-zhi, LIU Xiao-wen, CHEN Ming, GU Ming-han. Soil-water characteristic curve based on particle contact model using three unequal particle sizes [J]. , 2018, 39(2): 651-656.
[9] LU Hai-feng, CHEN Pan, WEI Chang-fu,. Evolution of suction strength of clayey soil under drying conditions and its microscopic mechanism [J]. , 2017, 38(S2): 145-150.
[10] WANG Jiao, SHAO Sheng-jun, CHEN Pan,. Experimental study of soil water properties, compression yield and collapse deformation of unsaturated remolded loess [J]. , 2017, 38(S2): 217-222.
[11] FANG Jin-jin, FENG Yi-xin, SHAO Sheng-jun,. Soil-water characteristics of intact Q3 loess under true triaxial condition [J]. , 2017, 38(9): 2597-2604.
[12] HUANG Qi-di ,ZHAO Cheng-gang,CAI Guo-qing,. A thermodynamics-based soil-water characteristic model with considering volumetric change and hysteresis [J]. , 2016, 37(7): 1857-1867.
[13] LI Shun-qun , JIA Hong-jing , WANG Xing-xing , GUI Chao,. Limitation and error analysis of axis translation technique for measuring and controlling matric suction [J]. , 2016, 37(11): 3089-3095.
[14] CHEN Wen-wu, BI Jun, MA Ya-wei, LIU Wei, JIANG Yao, . Fitted and predicted equations of MK model for soil-water characteristic curve and their parametric analysis [J]. , 2016, 37(11): 3208-3214.
[15] KONG Yu-fei, SONG Er-xiang. A method for estimating soil-water characteristic curve from grain-size distribution [J]. , 2015, 36(9): 2487-2493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[2] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[3] YANG Ai-wu,YAN Shu-wang,DU Dong-ju,ZHAO Rui-bin,LIU Ju. Experimental study of alkaline environment effects on the strength of cement soil of Tianjin marine soft soil[J]. , 2010, 31(9): 2930 -2934 .
[4] HE Si-ming, WU Yong, LI Xin-po. Research on restitution coefficient of rock fall[J]. , 2009, 30(3): 623 -627 .
[5] ZHANG Bo, Li Shu-cai, YANG Xue-ying, WANG Xi-ping. Research on seismic wave input with three-dimensional viscoelastic artificial boundary[J]. , 2009, 30(3): 774 -778 .
[6] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] SHI Chong , XU Wei-ya , ZHANG Yu , LI De-liang , LIU He. Study of dynamic parameters for talus deposit based on model of cellular automata[J]. , 2011, 32(6): 1795 -1800 .
[10] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .