›› 2013, Vol. 34 ›› Issue (1): 133-138.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of dynamic resilient modulus of cement-improved high liquid limit clay

DONG Cheng1, 2,LENG Wu-ming1,LI Zhi-yong2,CAO Xin-wen3   

  1. 1. School of Civil Engineering, Central South University, Changsha 410075, China; 2. Hunan Communications Research Institute, Changsha 410015, China; 3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2012-02-22 Online:2013-01-10 Published:2013-01-10

Abstract: In order to investigate the factors which affect the cement improved high liquid limit clay dynamic resilient modulus and their variation laws, a series of dynamic resilient modulus tests were carried out by conducting dynamic-triaxial tests. The study demonstrated that dynamic resilient modulus values rise with the increase of confining stress, compaction degree and cement content, decrease with the increase of circular deviator stress and moisture content. To accomplish the purpose of analysis the relationships between deviator stress, bulk stress and dynamic resilient modulus, the dual-factor analysis of variance was utilized. The analysis demonstrated that both the deviator stress and bulk stress have significant effects on the dynamic resilient modulus. However, the deviator stress has more significant effects. Considering that dynamic resilient modulus is a function of deviator stress and bulk stress, with a brief analysis of adaptability of the present dynamic resilient modulus constitutive models, the three-parameters compound constitutive model which reflects the effect of bulk stress and deviator stress was utilized for experimental data regression analysis. A high coefficient of determination shows that the model which reflects the effect of bulk stress and deviator stress is accurate and credible. The prediction models used for different compaction degrees, moisture contents and cement contents were achieved; and they can provide parameters for the pavement design based on dynamic method.

Key words: subgrade engineering, dynamic resilient modulus, cement improved high liquid limit clay, dynamic triaxial test, stress dependent, prediction model

CLC Number: 

  • TU 411
[1] LIANG Ke, CHEN Guo-xing, HE Yang, LIU Jing-ru, . An new method for calculation of dynamic modulus and damping ratio based on theory of correlation function [J]. Rock and Soil Mechanics, 2019, 40(4): 1368-1376.
[2] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[3] ZHONG Zu-liang, BIE Cong-ying, FAN Yi-fei, LIU Xin-rong, LUO Yi-qi, TU Yi-liang, . Experimental study on grouting diffusion mechanism and influencing factors of soil-rock mixture [J]. Rock and Soil Mechanics, 2019, 40(11): 4194-4202.
[4] WANG Li-yan, GONG Wen-xue, CAO Xiao-ting, JIANG Peng-ming, WANG Bing-hui. Anti-liquefaction characteristics of gravel steel slag [J]. Rock and Soil Mechanics, 2019, 40(10): 3741-3750.
[5] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[6] HAN Zhi-ming, QIAO Chun-sheng, ZHU Ju. Analysis of strength and failure characteristics of rock mass with two sets of cross-persistent joints [J]. , 2018, 39(7): 2451-2460.
[7] SHI Quan-bin, YANG Ping, YU Ke, TANG Guo-yi,. Sub peak adfreezing strength at the interface between frozen soil and structures [J]. , 2018, 39(6): 2025-2034.
[8] NIAN Ting-kai, JIAO Hou-bin, FAN Ning, GUO Xing-sen, JIA Yong-gang,. Experiment on dynamic strain-pore pressure of soft clay in the northern slope of South China Sea [J]. , 2018, 39(5): 1564-1572.
[9] ZHANG Xiu-zhao, WU Shang-wei, ZHANG Chao, YANG Chun-he,. Dynamic pore-water pressure evolution of tailings under different consolidation conditions [J]. , 2018, 39(3): 815-822.
[10] HUANG Juan, DING Zu-de , YUAN Tie-ying, ZHAO Dan, PENG Li-min,. Experimental study of dynamic deformation properties of peaty soil under cyclic loading [J]. , 2017, 38(9): 2551-2558.
[11] LIU Han-long, LIU Ping, YANG Gui, XIAO Yang, LIU Yan-chen,. Experimental investigations on dynamic residual deformation behaviors of PFA-reinforced rockfill materials [J]. , 2017, 38(7): 1863-1868.
[12] FAN Yong, LU Wen-bo, ZHOU Yi-hong, LENG Zhen-dong, YAN Peng,. A model for predicting vibration peak induced by blasting excavation under high in-situ stress [J]. , 2017, 38(4): 1082-1088.
[13] CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Effect of method of biological injection on dynamic behavior for bio-cemented sand [J]. , 2017, 38(11): 3173-3178.
[14] NIU Xi-rong, YAO Yang-ping, CHEN Zhong-da,. The strength and constitutive model of compacted weathered granite soils in Lüliang mountains [J]. , 2017, 38(10): 2833-2840.
[15] ZHAO Guo-yan, LIANG Wei-zhang, WANG Shao-feng, HONG Chang-shou. Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis [J]. , 2016, 37(S2): 273-278.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Li,CHAI Shou-xi,CAI Hong-zhou,WANG Xiao-yan,LI Min3,SHI Qian. Research on tensility of wheat straw for reinforced material[J]. , 2010, 31(1): 128 -132 .
[2] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[3] WANG Yang, TANG Xiong-jun, TAN Xian-kun, WANG Yuan-han. Mechanism analysis of floor heave in Yunling Tunnel[J]. , 2010, 31(8): 2530 -2534 .
[4] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[5] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[6] HU Qi, LING Dao-sheng, CHEN Yun-min. Analytical method and engineering application of horizontal coefficients of subgrade reaction based on Melan’s solution[J]. , 2009, 30(1): 33 -39 .
[7] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[8] WANG Jun, CAO Ping, LI Jiang-teng, LIU Ye-ke. Analysis of stability of tunnel-slope with rheological medium under rainfall infiltration[J]. , 2009, 30(7): 2158 -2162 .
[9] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[10] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .