›› 2013, Vol. 34 ›› Issue (3): 856-862.

• Geotechnical Engineering • Previous Articles     Next Articles

Residual deformation behavior of rockfill materials and sensitivity analysis of parameters

WANG Yu-zan,CHI Shi-chun,SHAO Lei,YANG Xin-guang   

  1. School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2012-02-07 Online:2013-03-11 Published:2013-03-20

Abstract: Based on many dynamic test results about rockfill materials of domestic earth-rock dams, the dynamic residual deformation characteristics of the rockfill materials are studied. During the process of collecting test data, the primary residual deformation model presented by Shen Zhu-jiang is modified along with considering the affect of consolidation ratio and fitting the test data well. Through dynamic residual deformation analysis and calculation of ideal concrete faced rockfill dam (CFRD), the similarities and differences between the primary residual deformation models presented by Shen Zhu-jiang, Kong Xian-jing, Ling Hua and this paper are given. Then, the rationality of this improved model is elaborated. In addition, based on the statistic analysis of test results, the average, upper and lower envelopes of the curves of - and - are proposed to calculate the seismic residual deformation of the rockfill materials. With the application of the above, the deformation behaviors of ideal CFRD are numerically analyzed. The results show that the parameters of c4 and c5 have great impact on the residual deformation of the dam; but the parameters of c1 and c2 have almost no effect. It’s significant to apply the mean curve parameters in seismic design of medium and small earth-rock dams and the result has certain reference value.

Key words: earth-rock dam, residual deformation, rockfill materials, sensibility analysis

CLC Number: 

  • TV 641.4
[1] WANG feng, ZHANG Jian-qing, . Study of breakage behaviour of original rockfill materials considering size effect on particle strength [J]. Rock and Soil Mechanics, 2020, 41(1): 87-94.
[2] LIU Si-hong, SHEN Chao-min, MAO Hang-yu, SUN Yi. State-dependent elastoplastic constitutive model for rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(8): 2891-2898.
[3] LI Shuai, ZHU Wan-cheng, NIU Lei-lei, LI Ru-fei, LI Shao-hua. Experimental study on influence of dynamic disturbance on deformation behavior of rock under stress relaxation [J]. , 2018, 39(8): 2795-2804.
[4] YANG Gui, SUN Xin, WANG Yang-yang, . Tests on resilient behaviour of polymer rockfill materials [J]. , 2018, 39(5): 1669-1674.
[5] DUAN Min-ke, JIANG Chang-bao, YU Huan, LU Tian-yu, NIU Bin-wei, SUN Dong-ling,. Experimental research on energy dissipation and seepage properties of coal under loading-unloading conditions at different stress levels [J]. , 2018, 39(4): 1346-1354.
[6] LIU Guo-ming, CHEN Ze-qin, WU Le-hai. Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters [J]. , 2018, 39(3): 823-830.
[7] ZHAO Kai, ZHOU Jian-jun, SUN Tian, LIU De-yang,. Dynamic residual deformation characteristics of saturated gravel soil considering drainage condition and coarse grain content [J]. , 2018, 39(3): 926-932.
[8] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Effect of dry density on mechanical properties of rockfill materials [J]. , 2018, 39(2): 507-514.
[9] ZOU De-gao, TIAN Ji-rong, LIU Jing-mao, ZHOU Chen-guang, NING Fan-wei,. Three-dimensional shape of rockfill material and its influence on particle breakage [J]. , 2018, 39(10): 3525-3530.
[10] GUO Wan-li, ZHU Jun-gao, YU Ting, JIN Wei,. Application of gradation equation for coarse-grained soil [J]. , 2018, 39(10): 3661-3667.
[11] LIU Han-long, LIU Ping, YANG Gui, XIAO Yang, LIU Yan-chen,. Experimental investigations on dynamic residual deformation behaviors of PFA-reinforced rockfill materials [J]. , 2017, 38(7): 1863-1868.
[12] LUO Tao, OOI E T, CHAN A H C, FU Shao-jun,. A 2-D polygon discrete element method and program for simulating rockfill materials [J]. , 2017, 38(3): 883-892.
[13] YANG Gui, XU Jian-bao, SUN Xin, TANG Chen-jing, . Experimental study of influence of particle shape on strength and deformation for artificial rockfill materials [J]. , 2017, 38(11): 3113-3118.
[14] WU Ying,MA Gang,ZHOU Wei,YANG Li-fu. Optimization of gradation of rockfill materials based on the fractal theory [J]. , 2016, 37(7): 1977-1985.
[15] MING Hua-jun , SUN Kai-chang , XU Xiao-feng , SHI Cun-peng,. A hypoplastic constitutive model for rockfill materials considering the influence of particle breakage on representative void ratio [J]. , 2016, 37(1): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[6] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[7] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LU Wei,XIANG Yan-yong,TANG Chao. Model experiment and numerical simulation of flow and heat transfer for sand-filled fractured rock model[J]. , 2011, 32(11): 3448 -3454 .
[10] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .