›› 2013, Vol. 34 ›› Issue (3): 908-912.

• Testing Technology • Previous Articles    

Correction-factor test method for nonlinear fracture toughness of frozen soil

LIU Zeng-li,LI Hong-sheng,XING Huai-nian,ZHANG Xiao-peng   

  1. Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116023, China
  • Received:2012-05-28 Online:2013-03-11 Published:2013-03-20

Abstract: A new method for determining nonlinear fracture toughness of frozen soil is presented based on the method of J integral as well considering nonlinear behavior characteristics of frozen soil. It is well known that J integral can be expressed as J =Je +Jp, in which Je represents elastic component and Jp represents plastic component. The calculation of Je is relatively simple, but the calculation of Jp is quite difficult. Because in the process of calculating Jp, one parameter Up, which represents the plastic work of sample, is very difficult to determine. To simplify the calculation, rewriting Jp as an expression of Je, Jp =qJe, then J integral expression becomes as J=(1+q)Je. That means when Je and factor q are determined for one kind of sample, J integral can be gotten easily. This method is named as correction-factor method. The correction factor q is obtained by increments of load and displacement according to curve of load vs. displacement (P-Δ curve), in which includes two cycles of loading-unloading. Using the suggested method, nonlinear fracture toughness of frozen soil in-situ is determined; and the results in comparison with the data of related literature show its reasonableness and availability.

Key words: frozen soil, nonlinear fracture toughness, J integral, correction factor

CLC Number: 

  • TU 411
[1] LI Xin, LIU En-long, HOU Feng, . A creep constitutive model for frozen soils considering the influence of temperature [J]. Rock and Soil Mechanics, 2019, 40(2): 624-631.
[2] SONG Hong-fang, YUE Zu-run, LI Bai-lin, ZHANG Song, . Thermal insulation and strengthening properties of anti-frost heaving subgrade structure of the high-speed railway in seasonally frozen soil region [J]. Rock and Soil Mechanics, 2019, 40(10): 4041-4048.
[3] WANG En-liang, JIANG Hai-qiang, HAN Hong-wei, XIE Fei, CUI En-tong,. Similarity analysis and experiment verification of freeze-thaw model [J]. , 2018, 39(S1): 333-340.
[4] SHI Quan-bin, YANG Ping, YU Ke, TANG Guo-yi,. Sub peak adfreezing strength at the interface between frozen soil and structures [J]. , 2018, 39(6): 2025-2034.
[5] BI Jun, CHEN Wen-wu, DAI Peng-fei, LIN Gao-chao, . Influence of correction factor on fitting parameters of various types of Van Genuchten model [J]. , 2018, 39(4): 1302-1310.
[6] ZHANG Xiang-dong, LI Jun, SUN Qi, YI Fu, QU Zhi,. Study on dynamic damage mechanism of frozen soil based on elastic modulus degradation [J]. , 2018, 39(11): 4149-4156.
[7] ZHANG Jin-xun, YANG Hao, SHAN Ren-liang, SUI Shun-meng, XUE Dong-chao,. Experimental research on triaxial compressive strength of frozen saturated sandy gravel [J]. , 2018, 39(11): 3993-4000.
[8] QIU Hao-miao, XIA Tang-dai, ZHENG Qing-qing, ZHOU Fei,. Parametric studies of body waves propagation in saturated frozen soil [J]. , 2018, 39(11): 4053-4062.
[9] CHEN Zhi-xiang, LI Shun-qun, XIA Jin-hong, ZHANG Xun-cheng, GUI Chao,. Calculation of frozen soil thermal parameters considering unfrozen water content [J]. , 2017, 38(S2): 67-74.
[10] CHEN Shi-jie, MA Wei, LI Guo-yu, LIU En-long, ZHANG Ge, . Development and application of triaxial apparatus of frozen soil used in conjunction with medical CT [J]. , 2017, 38(S2): 359-367.
[11] DU Hai-min, MA Wei, ZHANG Shu-juan, ZHOU Zhi-wei. Effects of confining pressure and water content on failure strain energy density for frozen silty sands [J]. , 2017, 38(7): 1943-1950.
[12] XIA Jin-hong, LI Shun-qun, XIA Yuan-you, WANG Xing-xing,. Specific heat of frozen soil considering sensible and latent heat of pore water [J]. , 2017, 38(4): 973-978.
[13] CAO Xue-ye, ZHAO Jun-hai, ZHANG Chang-guang. Elastoplastic stress analysis of frozen soil wall based on unified strength theory [J]. , 2017, 38(3): 769-774.
[14] ZHANG Yuan, DONG Jian-hua, DONG Xu-guang, WANG Yong-sheng, . Analysis of freezing and thawing of slope improved by soil nailing structure in seasonal frozen soil region [J]. , 2017, 38(2): 574-582.
[15] MA Dong-dong, MA Qin-yong, YUAN Pu, YAO Zhao-ming, . SHPB tests on artificial frozen sand and its analysis under active confining pressure [J]. , 2017, 38(10): 2957-2961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] WANG Guo-cui, YANG Min. Nonlinear analysis of laterally loaded piles in sand[J]. , 2011, 32(S2): 261 -267 .