›› 2008, Vol. 29 ›› Issue (2): 491-495.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on bolt effect on large section shallow depth loess tunnels

TAN Zhong-sheng1, YU Yu2, WANG Ming-nian3, YANG Jian-min2   

  1. 1. School of Civil Engineering and Architecture,Beijing Jiaotong University,Beijing 100044,China; 2. The Second Survey and Design Institute of China Railway, Chengdu 610031, China; 3. Southwest Jiaotong University, Chengdu 610031,China
  • Received:2007-09-15 Online:2008-02-11 Published:2013-07-10

Abstract: It has been a focus of debate for a long time how the system bolts act on the loess tunnel. Associating with the large section loess tunnel of the building Zhengzhou-Xi’an high-speed passenger rail lines, we have done many in site contrast testing to evaluate the effect of system bolt. For the good comparability of the testing result, we’d choose the tunnel which has the similar test condition. In this case, we take the Hejiazhang Tunnel as our experimental section in which we set system bolt section and non-system bolt section both for 40 meters. The main contrast experiences are the settlement of the tunnel crown and arch foot, horizontal convergence, surrounding rock pressure, the stress of initial supporting steel framework, axial force of bolt, etc. The testing results indicate: the section with system bolt has more 40% of the settlement in the tunnel crown and more 25 % horizontal convergence than the one without system bolt; there are little difference in the soil pressure and steel framework stress between the two sections; there is less axial force in the bolt and the part of arch is pressed. Through comprehensive analysis, we make the conclusion that there is little improvement of supporting effect in the crown bolt, so we suggest canceling the bolt to induce the construction procedure and quicken the enclosed of the initial supporting section of the tunnel. It will be helpful to control the supporting settlement and deformation and it also reduces the investment cost.

Key words: large cross section tunnel, tunnel in loess, bolt, contrast testing

CLC Number: 

  • U 459
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] JIN Xiao, YANG Wen, MENG Xian-Hong, LEI Le-Le, . Deduction and application of unfrozen water content in soil based on electrical double-layer theory [J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456.
[2] WU Qiu-hong, ZHAO Fu-jun, WANG Shi-ming, ZHOU Zhi-hua, WANG Bin, LI Yu, . Mechanical response characteristics of full grouted rock bolts subjected to dynamic loading [J]. Rock and Soil Mechanics, 2019, 40(3): 942-950.
[3] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
[4] LIU Yi-fei, ZHENG Dong-sheng, YANG Bing, ZHU Bing, SUN Ming-xiang. Microscopic simulation of influence of particle size and gradation on permeability coefficient of soil [J]. Rock and Soil Mechanics, 2019, 40(1): 403-412.
[5] GU Shuan-cheng, ZHOU Pan, HUANG Rong-bin. Stability analysis of tunnel supported by bolt-surrounding rock bearing structure [J]. , 2018, 39(S1): 122-130.
[6] CUI Guo-jian, ZHANG Chuan-qing, LIU Li-peng, ZHOU Hui, CHENG Guang-tan,. Study of effect of shear velocity on mechanical characteristics of bolt-grout interface [J]. , 2018, 39(S1): 275-281.
[7] ZHOU Yong, WANG Xu-ri, ZHU Yan-peng, LI Jing-bang, JIANG Xiao-kui,. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock [J]. , 2018, 39(6): 2249-2258.
[8] CHEN Wen-qiang, ZHAO Yu-fei, ZHOU Ji-jun,. Shear resistance theory of bolt considering nonlinear behaviour of grout reaction force [J]. , 2018, 39(5): 1662-1668.
[9] ZHAO Xiang-zhuo, ZHANG Hong-wei, CAO Chen , ZHANG Ming,. Optimisation of bolt rib spacing and anchoring force under different conditions of surrounding rock [J]. , 2018, 39(4): 1263-1270.
[10] HUANG Ming-hua, ZHAO Ming-hua, CHEN Chang-fu. Influence of anchorage length on stress in bolt and its critical value calculation [J]. , 2018, 39(11): 4033-4041.
[11] ZHANG Mei-zhu, JIANG Quan, WANG Xue-liang, FENG Xia-ting, ZHONG Shan, LIU Chang, . Triaxial compression test and strengthening mechanism analysis of cracked marble specimens with bolting-grouting reinforcement [J]. , 2018, 39(10): 3651-3660.
[12] WANG Zhi-liang, NIAN Yu-ze, SHEN Lin-fang, XU Ze-min,. Numerical simulation of macropores seepage field in the 3D reconstruction model of well vegetated slope soil based on LBM [J]. , 2018, 39(10): 3821-3829.
[13] LIU Quan-sheng, LEI Guang-feng, PENG Xing-xin, WEI Lai, LIU Jian-ping, PAN Yu-cong,. Experimental study and mechanism analysis of influence of bolt anchoring on shear properties of jointed rock mass [J]. , 2017, 38(S1): 27-35.
[14] SUN Jia-ping, GU Hou-yu, HU Guo-bao, WEN Shu-jie,. An improved minimum potential energy method for slope stability analysis under action of bolt [J]. , 2017, 38(S1): 291-298.
[15] WANG Zhi-liang, SHEN Lin-fang, LI Shao-jun, XU Ze-min,. Seepage characteristics of a single fracture based on lattice Boltzmann method [J]. , 2017, 38(4): 1203-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] YANG Li-guo,LUO Ya-sheng,LI Yan,WANG Zhi-jie. Research on effect of initial stress conditions on dynamic strength of compacted loess[J]. , 2010, 31(1): 87 -91 .
[5] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] LIU Quan-sheng, HU Yun-hua, LIU Bin. Progressive damage constitutive models of granite based on experimental results[J]. , 2009, 30(2): 289 -296 .
[8] JIN Zhi-ren,HE Ji-shan. Optimization of supporting plan for deep foundation pit based on distance discriminant analysis method[J]. , 2009, 30(8): 2423 -2430 .
[9] WANG Guo-bo,MA Xian-feng,YANG Lin-de. Three-dimensional seismic response analysis of metro station structures and tunnels in soft soil[J]. , 2009, 30(8): 2523 -2528 .
[10] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .