›› 2017, Vol. 38 ›› Issue (4): 1203-1210.doi: 10.16285/j.rsm.2017.04.035

• Numerical Analysis • Previous Articles     Next Articles

Seepage characteristics of a single fracture based on lattice Boltzmann method

WANG Zhi-liang1, SHEN Lin-fang1, LI Shao-jun2, XU Ze-min1   

  1. 1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2015-05-18 Online:2017-04-11 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51408284, 51508253, U1502231) and the Yunnan Applied Basic Research Project (2016FB077).

Abstract: To investigate seepage characteristics of a single rough fracture, based on lattice Boltzmann method, a numerical model is established to analyze the water flow in laminar under pressure. The D2Q9 model is applied to simulate the discrete velocity direction. On the macroscopic-scale, the upper and lower boundaries (ux =uy =0) are assumed to be impermeable, and the left and right boundaries are controlled by pressure (i.e., the pressure on the left side is larger than that on the right side). On the microscopic-scale, the non-equilibrium extrapolation scheme is set on the pressure boundary and smooth fracture surface boundary, and the standard bounce-back scheme is set on the rough fracture surface boundary. The corresponding program is compiled to verify the classical cubic law of smooth plate fracture flow. The rough fracture surface is generated by setting piecewise random length and random width, and seepage characteristics of different rough fracture surfaces are discussed in detail. The results show that fracture surface roughness greatly affects seepage characteristics. With the increase of relative roughness, the deviation from cubic law becomes more obvious. Therefore, by considering the effect of relative fracture surface roughness, the modified cubic law is proposed according to numerical results of different schemes of rough fracture surface. This study lays the foundation for further research on the complex hydraulic characteristics of rough fracture.

Key words: lattice Boltzmann method, single fracture, seepage characteristics, numerical simulation

CLC Number: 

  • O 357.3

[1] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[2] SHI Lin-ken, ZHOU Hui, SONG Ming, LU Jing-jing, ZHANG Chuan-qing, LU Xin-jing, . Physical experimental study on excavation disturbance of TBM in deep composite strata [J]. Rock and Soil Mechanics, 2020, 41(6): 1933-1943.
[3] ZHANG Zhen, ZHANG Zhao, YE Guan-bao, WANG Meng, XIAO Yan, CHENG Yi, . Progressive failure mechanism of stiffened deep mixed column-supported embankment [J]. Rock and Soil Mechanics, 2020, 41(6): 2122-2131.
[4] GAO Xue-feng, ZHANG Yan-jun, HUANG Yi-bin, ZHAO Yi, NI Jin, MA Jing-chen. Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite [J]. Rock and Soil Mechanics, 2020, 41(5): 1761-1769.
[5] SU Jie, ZHOU Zheng-hua, LI Xiao-jun, DONG Qing, LI Yu-ping, CHEN Liu. Discussion on determination of shear wave arrival time based on the polarization effect in downhole method [J]. Rock and Soil Mechanics, 2020, 41(4): 1420-1428.
[6] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, . Study of thawing and consolidation law of ice-rich embankment [J]. Rock and Soil Mechanics, 2020, 41(3): 1010-1018.
[7] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[8] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[9] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[10] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[11] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[12] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[13] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[14] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[15] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!