›› 2008, Vol. 29 ›› Issue (4): 1067-1071.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Simplified analytical procedure of stabilizing piles against sliding considering pore water pressure

NIAN Ting-kai1, LUAN Mao-tian1, ZHENG De-feng2, JIANG Jing-cai2   

  1. 1. State Key Laboratory of Coastal and Offshore Engineering School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China; 2. School of Urban and Environmental Sciences, Liaoning Normal University, Dalian 116029, China; 3. Department of Civil and Environmental Engineering, The University of Tokushima, Tokushima 770-8506, Japan
  • Received:2006-09-02 Online:2008-04-10 Published:2013-07-10

Abstract: Based on the upper-bound approach of limit analysis and the strength reduction technique, the equation for expressing the critical state of slope stabilized by a row of piles is formulated and is employed to determine the lateral limit effective earth pressure and its corresponding critical failure surface for a given slope subjected to pore water pressure. The presence of pore water can be embodied through work terms in the energy balance equation, and water pressure is considered as an external force similar to gravity and surface tractions. Furthermore, the governing equation of deflection for stabilizing pile is built based on the obtained dimensionless lateral limit effective earth pressure, and the numerical algorithm using finite-difference method is developed to numerically solve the partial differential equation. Finally, numerical computations are made to examine the effect of pore water pressure on optimum location of pile placement and the reinforced force supplied by piles with a typical example slope.

Key words: slope, stabilizing pile, pore water pressure, limit analysis of plasticity, strength reduction technique

CLC Number: 

  • TU 432
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[2] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
[3] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
[4] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[5] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
[6] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
[7] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
[8] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[9] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[10] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
[11] WANG Zhen, CAO Lan-zhu, WANG Dong, . Evaluation on upper limit of heterogeneous slope stability [J]. Rock and Soil Mechanics, 2019, 40(2): 737-742.
[12] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
[13] WANG Hua-bin, LI Jian-mei, JIN Yi-xuan, ZHOU Bo, ZHOU Yu, . The numerical methods for two key problems in rainfall-induced slope failure [J]. Rock and Soil Mechanics, 2019, 40(2): 777-784.
[14] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
[15] YIN Xiao-meng, YAN E-chuan, LIU Xu-yao, LI Xing-ming, . Study on force of underground water in soil stability calculation [J]. Rock and Soil Mechanics, 2019, 40(1): 156-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIAN Chuan-jie, XU Wei-ya, WANG Ya-jie, WANG Zhi-hua. Numerical simulation of entry performance supported by a new high strength and high pretension yieldable bolts[J]. , 2010, 31(7): 2329 -2335 .
[2] XU Fei,XU Wei-ya,WEN Sen,LIU Zao-bao,ZHAO Yan-xi. Projection pursuit based on particle swarm optimization for evaluation of surrounding rock stability[J]. , 2010, 31(11): 3651 -3655 .
[3] LIN Hang,CAO Ping,LI Jiang-teng,JIANG Xue-liang,HE Zhong-ming. Deformation stability of three-dimensional slope based on Hoek-Brown criterion[J]. , 2010, 31(11): 3656 -3660 .
[4] RAN Long, HU Qi. Analysis of seepage failure of deep foundation pit in silty sand[J]. , 2009, 30(1): 241 -245 .
[5] QIAN Ji-yun, ZHANG Ga, ZHANG Jian-min. Centrifuge model tests for deformation mechanism of soil slope during rainfall[J]. , 2011, 32(2): 398 -402 .
[6] WEI Ning,LI Xiao-chun,WANG Yan,GU Zhi-meng. Resources quantity and utilization prospect of methane in municipal solid waste landfills[J]. , 2009, 30(6): 1687 -1692 .
[7] LIN Da-ming1,2,SHANG Yan-jun1,SUN Fu-jun3,SUN Yuan-chun1,2,WU Feng-bo1,2,LIU Zhi. Study of strength assessment of rock mass and application[J]. , 2011, 32(3): 837 -842 .
[8] WANG Lin , YANG Hai-peng , NIE Qing-ke. Numerical simulation for building settlements and its distribution characteristics using engineering analogy[J]. , 2009, 30(S2): 485 -488 .
[9] DAI Guo-liang, ZHOU Xiang-qin, LIU Yun-zhong, LIU Li-ji, GONG Wei-ming. Model test research on horizontal bearing capacity of closed diaphragm wall[J]. , 2011, 32(S2): 185 -189 .
[10] LI Jian-jun,SHAO Sheng-jun,YANG Fu-yin,YANG Chun-ming. Experimental research on impermeable characteristics of slurry cake in cutoff wall hole of coarse-grained soil[J]. , 2012, 33(4): 1087 -1093 .