›› 2008, Vol. 29 ›› Issue (6): 1618-1622.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Measurement of deformation of unsaturated compacted soil triaxial specimen based on digital image measurement method

DONG Jian-jun1,2, SHAO Long-tan1, LIU Yong-lu3, YAO Tao1   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China; 2.School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, China; 3. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
  • Received:2006-12-13 Online:2008-06-10 Published:2013-07-15

Abstract: A new means of strain measurement of unsaturated soil specimen is introduced in suction-controlled triaxial tests based on digital image measurement method. The digital image measurement method can non-contactually and selectively measure the deformation of whole and local specimen and overcomes some critical shortcomings of using conventional strain measurement method for unsaturated soil specimen in suction-controlled triaxial tests. Meanwhile, the deformation process of the unsaturated soil specimen can also be recorded and analyzed after tests finished. The local deformation of middle section of unsaturated soil specimen that is relatively little influenced by end restraint can be handily and accurately measured by adopting the method. The deformation measurement results of unsaturated compacted soil specimens show that the end restraint has material effect on deformation of specimens and deformation characteristics of middle section is evidently different from the whole specimen that is influenced by end restraint in suction-controlled isotropic loading and triaxial compression tests. So the deformation measurement results of middle section can correspondingly really reflect basic deformation characteristics of unsaturated soil.

Key words: digital image measurement, unsaturated compacted soil, suction, triaxial test, strain

CLC Number: 

  • TU 411
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[2] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[3] GONG Wen-hui, ZHAO Xu-dong, QIU Jin-wei, LI Yi, YANG Han. Nonlinear analysis of one-dimensional consolidation of saturated clay including dead-weight effects and large strain [J]. Rock and Soil Mechanics, 2019, 40(6): 2099-2107.
[4] LI Jian-peng, GAO Ling, MU Huan-sheng. Dilatancy characteristics of sandstone and its function of dilatancy angle under high confining pressure and unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(6): 2119-2126.
[5] JIA Rui, LEI Hua-yang, . Experimental study of anisotropic consolidation behavior of Ariake clay [J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238.
[6] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[7] PU He-fu, SONG Ding-bao, ZHENG Jun-jie, ZHOU Yang, YAN Jing, LI Zhan-yi. Non-linear self-weight consolidation model of saturated soft soil under large-strain condition [J]. Rock and Soil Mechanics, 2019, 40(5): 1683-1692.
[8] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[9] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
[10] XU Peng, JIANG Guan-lu, LEI Tao, LIU Qi, WANG Zhi-meng, LIU Yong, . Calculation of seismic displacement of reinforced soil retaining walls considering backfill strength [J]. Rock and Soil Mechanics, 2019, 40(5): 1841-1846.
[11] LI Xiu-lei, LI Jin-feng, SHI Jian-yong, . Elastoplastic constitutive model for municipal solid waste considering the effect of fibrous reinforcement [J]. Rock and Soil Mechanics, 2019, 40(5): 1916-1924.
[12] WANG Feng-yun, QIAN De-ling, . Dilatancy analysis for a circular tunnel excavated in rock mass based on unified strength theory [J]. Rock and Soil Mechanics, 2019, 40(5): 1966-1976.
[13] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Stress-strain behavior of expansive soil under K0 condition with different unloading rates [J]. Rock and Soil Mechanics, 2019, 40(4): 1299-1306.
[14] LUO Dan-ni, SU Guo-shao, HE Bao-yu, . True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331-1340.
[15] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LAN Si-qing, WANG Yu-lin, XIE Kang-he. Mathematical model and analytical solutions of soft soil consolidation with both way drainages in radial directions[J]. , 2009, 30(12): 3871 -3875 .
[2] . Numerical implementation of discontinuities in dual media 3D model for thermo-hydro-mechanical coupling[J]. , 2010, 31(2): 638 -644 .
[3] SUN De-an,CHEN Bo. Mechanical behavior of remolded overconsolidated Shanghai soft clay and its elastoplastic simulation[J]. , 2010, 31(6): 1739 -1743 .
[4] ZHU Zhen-de,SUN Lin-zhu,WANG Ming-yang. Damping ratio experiment and mesomechanical analysis of deformation failure mechanism on rock under different frequency cyclic loadings[J]. , 2010, 31(S1): 8 -12 .
[5] FANG Zhi-ming, LI Xiao-chun, LI Hong, CHEN Han-qiu. Feasibility study of gas mixture enhanced coalbed methane recovery technology[J]. , 2010, 31(10): 3223 -3229 .
[6] LEI Jin-bo,CHEN Cong-xin. Research on load transfer mechanism of composite foundation of rigid pile with cap based on hyperbolic model[J]. , 2010, 31(11): 3385 -3391 .
[7] WANG Deng-ke,LIU Jian,YIN Guang-zhi,WEI Li-de. Research on influencing factors of permeability change for outburst-prone coal[J]. , 2010, 31(11): 3469 -3474 .
[8] FAN Heng-hui, GAO Jian-en, WU Pu-te, LUO Zong-ke. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. , 2010, 31(12): 3741 -3745 .
[9] CHEN Xu-guang,ZHANG Qiang-yong. Mechanism analysis of phenomenon of zonal disintegration in deep tunnel model test under high geostress[J]. , 2011, 32(1): 84 -90 .
[10] YAN E-chuan, LIU Huan-bin, LI Xiang-yi, WU Yi-ping. Improvement of compatible distortion method for structure of pile-anchor[J]. , 2009, 30(5): 1446 -1450 .