›› 2008, Vol. 29 ›› Issue (11): 3041-3046.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on simple calculating method of designing foundation pit supporting by soil nailing

ZHANG Bai-hong1, 2, LI Guo-fu1, HAN Li-jun2   

  1. 1. Department of Civil Engineering, Xuzhou Institute of Engineering, Xuzhou 221008, China; 2. School of Architecture and Civil Engineering, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2007-07-26 Online:2008-11-10 Published:2013-08-07

Abstract: The technique of soil nailing has already got an extensive application to deep foundation pit engineering, but the research of its work mechanism and the calculation method is still not perfect. Now the numerical simulation experiments are prevalent; but it must to do a large numbers of triaxial or true triaxial tests to gain the exact model and other parameters for local soil. So a simple calculation model is founded based on three supposes, the writer also studies on the work mechanism of soil nailing and finds the regulation that Curve of nail stress is “Two half parabola”, and the concerned formulas is deduced. Combining the Pengcheng underground square engineering, the data of displacement for pit are measured. The stresses of soil nailing are also measured; these data verifies the accuracy of the formulas. The analytical algorithm is worth for reference in the similar case.

Key words: foundation pit engineering, soil nailing, horizontal displacement, analytical algorithm

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GUO Hong-xian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay [J]. Rock and Soil Mechanics, 2018, 39(S2): 398-404.
[2] ZHOU Yong, LING Yong-qiang, YANG Xiao-hui, . Relationship between the displacement and stability of pile anchor retaining structure considering additional stress [J]. , 2018, 39(8): 2913-2921.
[3] LI Lian-xiang, FU Qing-hong, HUANG Jia-jia, . Centrifuge model tests on cantilever foundation pit engineering in sand ground and silty clay ground [J]. , 2018, 39(2): 529-536.
[4] WANG Zheng-zhen, GONG Wei-ming, DAI Guo-liang,WANG Xiao-yang, LI Liang-liang, XIAO Gang,. Field test on composite foundation with thick cushion and sand pile group [J]. , 2018, 39(10): 3755-3762.
[5] LI Lian-xiang, HU Feng, HU Xue-bo, ZHANG Jia-mian,. Development and application of new type of assembly recyclable soil nailing for foundation pit engineering [J]. , 2017, 38(S1): 113-122.
[6] ZHANG Yuan, DONG Jian-hua, DONG Xu-guang, WANG Yong-sheng, . Analysis of freezing and thawing of slope improved by soil nailing structure in seasonal frozen soil region [J]. , 2017, 38(2): 574-582.
[7] ZHANG Zhi-guo, LU Ming-hao, GONG Jian-fei,. Time-domain solution for influence of excavation on adjacent pile deformation in visco-elastic foundation [J]. , 2017, 38(10): 3017-3028.
[8] ZHANG Ga, JIN Hong-liu. Failure behavior of soil nailing-reinforced slopes under drawdown conditions [J]. , 2016, 37(S2): 137-143.
[9] ZHOU Yong, WANG Zheng-zhen, . Improvement of internal stability analysis method of soil nailing wall [J]. , 2016, 37(S2): 356-362.
[10] LIU Yan , LIU Jun-yan , ZHENG Quan-ming , MA Gui-ning,. Model test study of synergistic effect of anchor composite soil nailing [J]. , 2016, 37(S1): 462-468.
[11] WU Feng-bo,JIN Huai,ZHU Shao-kun,. Ground deformation characteristics of foundation pit related to the urban rail transit in Beijing [J]. , 2016, 37(4): 1066-1074.
[12] WANG Jian-hua,LI Jiang-teng,LIAO Jun, . Several issues on the soil nailing wall combined with row piles in bracing the deep foundation pits of open cut tunnel [J]. , 2016, 37(4): 1109-1117.
[13] JIA Min-cai , QIANG Xiao , YE Jian-zhong,. Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment [J]. , 2015, 36(S1): 491-495.
[14] LI Lian-xiang , WANG Chun-hua , ZHOU Ting-ting , HU Xue-bo , ZHANG Shu-long , . Impact of position of micro pile on mechanical behaviors of composite soil nailing wall curtain [J]. , 2015, 36(S1): 501-505.
[15] XIA Yuan-you , CHEN Chun-shu , BAKRI Mudthir , WANG Zhi-de , ZHOU Xiong,. Analysis of horizontal displacement of soil induced by shallow tunnel excavation [J]. , 2015, 36(2): 354-360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Qing,ZHAO Jun-hai,WEI Xue-ying. Investigation of rock resistant coefficient in rocks around tunnel based on unified strength theory[J]. , 2009, 30(11): 3393 -3398 .
[2] CUI Kai, CHEN Wen-wu, ZHANG Jing-ke, HAN Wen-feng, LIANG Shou-yun. Relationships between microstructure parameters and wind erosion rate of multivariate layered soil in slope[J]. , 2009, 30(9): 2741 -2746 .
[3] JIE Ying, TANG Xiao-wei , LUAN Mao-tian. Finite-element free Galerkin coupling method for sand liquefaction-induced deformation[J]. , 2010, 31(8): 2643 -2647 .
[4] HU Ming-jian, WANG Ren, CHEN Zhong-xue, WANG Zhi-bing. Initiation process simulation of debris deposit based on particle flow code[J]. , 2010, 31(S1): 394 -397 .
[5] BAI Bing, LI Chun-feng. Elastoplastic dynamic responses of close parallel metro tunnels to vibration loading[J]. , 2009, 30(1): 123 -128 .
[6] XUE Yun-liang, LI Shu-lin, LIN Feng, XU Hong-bin. Study of damage constitutive model of SFRC considering effect of damage threshold[J]. , 2009, 30(7): 1987 -1992 .
[7] ZHANG Jun-hui. Analysis of deformation behavior of expressway widening engineering under different foundation treatments[J]. , 2011, 32(4): 1216 -1222 .
[8] WANG Liang-qing, P.H.S.W. Kulatilake, TANG Hui-ming, LIANG Ye , WU Qiong ,. Kinematic analyses of sliding and toppling failure of double free face rock mass slopes[J]. , 2011, 32(S1): 72 -77 .
[9] LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. , 2011, 32(S1): 100 -105 .
[10] DENG Hua-feng, LI Jian-lin, LIU Jie, ZHU Min, GUO Jing, LU Tao. Research on propagation of compression shear fracture in rocks considering fissure water pressure[J]. , 2011, 32(S1): 297 -0302 .