›› 2015, Vol. 36 ›› Issue (S1): 491-495.doi: 10.16285/j.rsm.2015.S1.085

• Geotechnical Engineering • Previous Articles     Next Articles

Comparison study of reinforcement effect of HDPE/PET geogrids in fill embankment

JIA Min-cai1, 2, QIANG Xiao1, YE Jian-zhong3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Zhejiang Provincial Institute of Communications Planning, Design & Research, Hangzhou, Zhejiang 310006, China
  • Received:2015-03-17 Online:2015-07-11 Published:2018-06-14

Abstract: In order to figure out the difference of reinforcement effect between high-density polyethylene(HDPE) geogrids and polyethylene terephthalate(PET) geogrids in fill embankment with wrapped face, based on tensile tests of two geogrids, this paper analyzes the force-deflection characteristics of two different geogrids-reinforced embankment by means of FLAC3D and some in-situ tested data. The results show that the mechanical properties of geogrids have an obvious influence on the displacement of reinforced embankment; and the influence is related to its overlying earth pressure. In the middle and lower part of the embankment, because of the higher earth pressure value, there exists a relatively huge variance in strain value of HDPE geogrids along its length, and the variance of strain value of PET geogrids is within a narrow range; in the upper part of the embankment, the less earth pressure value leads to the lower strain value of geogrids and there is no various strain difference between the two types of geogrids. PET geogrids are better than HDPE geogrids in the effect of controlling displacement of the reinforced embankment. The distribution of vertical and horizontal earth pressures has less difference between PET and HDPE reinforced embankment.

Key words: high-density polyethylene/polyethylene terephthalate (HDPE/PET) geogrids, reinforced embankment, FLAC3D, geogrids strain, horizontal displacement

CLC Number: 

  • U 416.1
[1] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[2] YANG Wen-bo, ZOU Tao, TU Jiu-lin, GU Xiao-xu, LIU Yu-chen, YAN Qi-xiang, HE Chuan. Analysis of dynamic response of horseshoe cross-section tunnel under vibrating load induced by high-speed train [J]. Rock and Soil Mechanics, 2019, 40(9): 3635-3644.
[3] SHEN Hong, LI Xiao, LEI Mei-qing, XU Wen-bo, YU Xiu-ling, . Conception and model test of shear bond supporting system [J]. Rock and Soil Mechanics, 2019, 40(7): 2574-2580.
[4] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[5] ZOU You-xue, WANG Rui, ZHANG Jian-mi, . Analysis on the seismic response of stone columns composite foundation in liquefiable soils [J]. Rock and Soil Mechanics, 2019, 40(6): 2443-2455.
[6] WANG Jian-jun, CHEN Fu-quan, LI Da-yong. A simple solution of settlement for low reinforced embankments on Kerr foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 250-259.
[7] LIU Jian, ZHAO Guo-yan, LIANG Wei-zhang, WU Hao, PENG FU-hua,. Numerical simulation of uniaxial compressive strength and failure characteristics in nonuniform rock materials [J]. , 2018, 39(S1): 505-512.
[8] YANG Xiu-rong, JIANG An-nan, JIANG Zong-bin. Creep test and damage model of soft rock under water containing condition [J]. , 2018, 39(S1): 167-174.
[9] CHEN Fu-quan, LAI Feng-wen, LI Da-yong. State of the art in research of geosynthetic-reinforced embankment overlying voids [J]. , 2018, 39(9): 3362-3376.
[10] ZHOU Yong, LING Yong-qiang, YANG Xiao-hui, . Relationship between the displacement and stability of pile anchor retaining structure considering additional stress [J]. , 2018, 39(8): 2913-2921.
[11] LIANG Cheng, XU Chao, . Study on critical height of reinforced embankments with geocell layer [J]. , 2018, 39(8): 2984-2990.
[12] LIU Fei-yue, YANG Tian-hong, ZHANG Peng-hai1, ZHOU Jing-ren, DENG Wen-xue, HOU Xian-gang, ZHAO Yong-chuan, . Dynamic inversion of rock fracturing stress field based on acoustic emission [J]. , 2018, 39(4): 1517-1524.
[13] ZOU You-xue, WANG Rui, ZHANG Jian-min, . Implementation of a plasticity model for large post-liquefaction deformation of sand in FLAC3D [J]. , 2018, 39(4): 1525-1534.
[14] WANG Zheng-zhen, GONG Wei-ming, DAI Guo-liang,WANG Xiao-yang, LI Liang-liang, XIAO Gang,. Field test on composite foundation with thick cushion and sand pile group [J]. , 2018, 39(10): 3755-3762.
[15] JIANG Yi, WEI Siyu, SHANG Yan-jun, GAO Qiang, LI Yan-yan,. Study of mechanical properties of deep mixed ground [J]. , 2017, 38(S2): 266-272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU Yu-cheng,CAO Shu-gang,LIU Yan-bao. Discussion on some time functions for describing dynamic course of surface subsidence due to mining[J]. , 2010, 31(3): 925 -931 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[8] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[9] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .
[10] WANG Cheng-bing. Laboratory and numerical investigation on failure process of tunnel constructed in homogeneous rock[J]. , 2012, 33(1): 103 -108 .