›› 2007, Vol. 28 ›› Issue (2): 219-223.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Movement characteristics and dynamical numerical analysis of sand-sliding slope composed by granular clastics Part II of sand-sliding slope series

WANG Cheng-hua1, QUE Yun2, LI Xin-po1, 3, ZHANG Xiao-gang1   

  1. 1. Institute of Mountain Hazard and Environment (IMHE), Chinese Academy of Sciences and Water Resources Ministry, Chengdu 610041, China; 2. Department of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; 3. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
  • Received:2005-04-05 Online:2007-02-10 Published:2013-08-28

Abstract: The method of dynamical numerical analysis is used to analyse the movement of grains on slope; and the research is based on in-situ observation and model tests. First, there are two main movement patterns, slide and roll. And these two movement patterns can converse each other. The movement can be caused by pull or push forces. On the pull-surface, most of grains move in rolling pattern and the roll will be driven by the movement of sands on the top or in front of them. On the push-surface, most of grains move in slide pattern and the slide will be driven from the top or back of them. Then, based on the driven force conditions of a grain of sand, the movement parameters and dynamical model of sand in sliding, rolling and crash are derived.

Key words: sand-sliding slope composed by granular clastics, movement characteristics, slide, roll, crash

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
    [2] ZHAO Ding-feng, LIANG Ke, CHEN Guo-xing, XIONG Hao, ZHOU Zheng-long, . Experimental investigation on a new incremental pore pressure model characterized by shear-volume strain coupling effect [J]. Rock and Soil Mechanics, 2019, 40(5): 1832-1840.
    [3] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
    [4] WEI Shao-wei, SUI Yan-yang, YANG Jian-min, . Model tests on anti-sliding mechanism of circular and rectangular cross section anti-sliding piles [J]. Rock and Soil Mechanics, 2019, 40(3): 951-961.
    [5] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
    [6] LEI Da, JIANG Guan-lu, SUN Sheng-jie, QI Zhi-hui, LI An-hong, . Study of bridge foundation on slope reinforced by anti-slide piles on shaking table [J]. Rock and Soil Mechanics, 2019, 40(1): 127-134.
    [7] LIU Yong, FENG Shuai, QIN Zhi-meng. Similarity evaluation method of landslide monitoring points based on motion-angle-difference [J]. Rock and Soil Mechanics, 2019, 40(1): 288-296.
    [8] JING Lu, KWOK Chung-yee, ZHAO Tao, . Understanding dynamics of submarine landslide with coupled CFD-DEM [J]. Rock and Soil Mechanics, 2019, 40(1): 388-394.
    [9] FAN Ning, NIAN Ting-kai, JIAO Hou-bin, ZHENG De-feng, . Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides [J]. Rock and Soil Mechanics, 2019, 40(1): 413-420.
    [10] MA Xian-chun, LUO Gang, DENG Jian-hui, SHANGGUAN Li, . Study of anchorage depth of anti-sliding piles for steep-sliding accumulation landslides [J]. Rock and Soil Mechanics, 2018, 39(S2): 157-168.
    [11] LI Yang, SHE Cheng-xue, ZHU Huan-chun, . Simulation and verification of particle flow of vibration rolling compaction of field rockfill [J]. Rock and Soil Mechanics, 2018, 39(S2): 432-442.
    [12] ZHANG Zhi-guo, ZHANG Cheng-ping, MA Bing-bing, GONG Jian-fei, YE Tong. Physical model test and numerical simulation for anchor cable reinforcements of existing tunnel under action of landslide [J]. , 2018, 39(S1): 51-60.
    [13] FAN Ning, NIAN Ting-kai, ZHAO Wei, LU Shuang, SONG Lei, YIN Ping,. Rheological test and strength model of submarine mud flow [J]. , 2018, 39(9): 3195-3202.
    [14] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
    [15] ZHAO Jian-jun, YU Jian-le, XIE Ming-li, CHAI He-jun, LI Tao, BU Fan, LIN Bing,. Physical model studies on fill embankment slope deformation mechanism under rainfall condition [J]. , 2018, 39(8): 2933-2940.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] CHENG Tao, YAN Ke-qin. Numerical simulation for influences of stress paths on earth's surface deformation[J]. , 2010, 31(2): 661 -666 .
    [2] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
    [3] HE Xian-long, ZHAO Li-zhen. Analysis of shear wave velocity based on multiple cross-correlation functions[J]. , 2010, 31(8): 2541 -2545 .
    [4] SONG Fei,LIU Chao,ZHANG Jian-min,ZHENG Rui-hua. Development of centrifuge model test facility of retaining wall[J]. , 2010, 31(9): 3005 -3011 .
    [5] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
    [6] PAN Yue, ZHANG Yong, WANG Zhi-qiang. Catastrophe theoretical analysis of disintegrated outburst of a single coal shell in coal-gas outburst[J]. , 2009, 30(3): 595 -602 .
    [7] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
    [8] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
    [9] YANG Yong-xiang , ZHOU Jian , JIA Min-cai , HU Jin-hu. Visualization testing on liquefaction properties of saturated sands[J]. , 2011, 32(6): 1643 -1648 .
    [10] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .