Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (1): 288-296.doi: 10.16285/j.rsm.2017.1113

• Geotechnical Engineering • Previous Articles     Next Articles

Similarity evaluation method of landslide monitoring points based on motion-angle-difference

LIU Yong, FENG Shuai, QIN Zhi-meng   

  1. School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan, Hubei 430074, China
  • Received:2017-06-05 Online:2019-01-11 Published:2019-01-31
  • Supported by:
    This work was supported by the National Natural Sciences Foundation of China (41772376).

Abstract: Under the same or similar external conditions, the similarity degree of internal structure and external performance of landslide can be clearly demonstrated by the similarity of movement of landslide monitoring points. Thus, it is of important theoretical value and practical significance to use appropriate similarity evaluation method. In this paper, a method based on motion-angle-difference is proposed to evaluate similarity of movement of landslide monitoring points. The velocity of landslide deformation is converted to angle, and the acceleration of landslide deformation is converted to motion-angle-difference. By comparing the motion-angle-differences, the similarity of different landslide monitoring points could be accurately evaluated. In view of the sufficient data, the three dimensional motion-angle-difference is proposed. In this way, not only the distinguishable responses of each monitoring point to the same external influencing factors are emphasized, but also the scale effect can be effectively eliminated. Through a set of experiments, the applications of this method have generated great results, such as partition evaluation of similarity of different monitoring points on the same landslide, evaluation of similarity of different landslides in the Three Gorges Reservoir Region, and displacement prediction of similar landslide monitoring points.

Key words: motion-angle-difference, landslide, monitoring point, similarity

CLC Number: 

  • P 642.22
[1] DU Wen-jie, SHENG Qian, FU Xiao-dong, TANG Hua, CHEN He, DU Yu-xiang, ZHOU Yong-qiang. Dynamic stability analysis and failure mechanism of Yanyang village landslide under earthquake [J]. Rock and Soil Mechanics, 2020, 41(7): 2461-2469.
[2] JIAN Wen-bin, HUANG Cong-hui, LUO Yang-hua, NIE Wen. Experimental study on wetting front migration induced by rainfall infiltration in unsaturated eluvial and residual soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1123-1133.
[3] HAN Dong-dong, MEN Yu-ming, HU Zhao-jiang. Experimental study of anti-sliding mechanism and force of lattice anchor in soil landslide [J]. Rock and Soil Mechanics, 2020, 41(4): 1189-1194.
[4] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[5] TANG Ming-gao, LI Song-lin, XU Qiang, GONG Zheng-feng, ZHU Quan, WEI Yong. Study of deformation characteristics of reservoir landslide based on centrifugal model test [J]. Rock and Soil Mechanics, 2020, 41(3): 755-764.
[6] CHEN He, ZHANG Yu-fang, ZHANG Xin-min, WEI Shao-wei, . Full-scale model experiments on anti-sliding characteristics of high-pressure grouting steel-tube micropiles [J]. Rock and Soil Mechanics, 2020, 41(2): 428-436.
[7] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[8] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[9] HUANG Xiao-hu, LEI De-xin, XIA Jun-bao, YI Wu, ZHANG Peng, . Forecast analysis and application of stepwise deformation of landslide induced by rainfall [J]. Rock and Soil Mechanics, 2019, 40(9): 3585-3592.
[10] DENG Mao-lin, YI Qing-lin, HAN Bei, ZHOU Jian, LI Zhuo-jun, ZHANG Fu-ling, . Analysis of surface deformation law of Muyubao landslide in Three Gorges reservoir area [J]. Rock and Soil Mechanics, 2019, 40(8): 3145-3152.
[11] YUGuo, XIE Mo-wen, HU Qing-zhong, JIN Yu-peng, . A method for calculating the three-dimensional landslide speed of reservoir bank based on GIS [J]. Rock and Soil Mechanics, 2019, 40(7): 2781-2788.
[12] ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming, . Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data [J]. Rock and Soil Mechanics, 2019, 40(7): 2866-2872.
[13] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[14] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
[15] PEI Xiang-jun, ZHU Ling, CUI Sheng-hua, ZHANG Xiao-chao, LIANG Yu-fei, GAO Hui-hui, ZHANG Zi-dong. Liquefaction characteristics of interlayer dislocation zone of Daguangbao landslide and its start-up cause [J]. Rock and Soil Mechanics, 2019, 40(3): 1085-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!