›› 2007, Vol. 28 ›› Issue (10): 2009-2016.

• Fundamental Theroy and Experimental Research •     Next Articles

System of generalized nonlinear strength theory

LU De-chun1, 2, YAO Yang-ping1, ZOU Bo1   

  1. 1.Department of Civil Engineering, Beihang University, Beijing 100083, China; 2.Institute of Geotechnical and Underground Engineering, Beijing University of Technology, Beijing 100022, China
  • Received:2005-09-29 Online:2007-10-10 Published:2013-10-15

Abstract: A unified expression describing the nonlinear characteristics of strengths of various materials on the π plane and the meridian plane is used in the generalized nonlinear strength theory. Thus a brand new system of the nonlinear strength theory is formed. The nonlinear strength theory is developed from the single nonlinear strength theory which can be just suitable to a certain material to the generalized nonlinear strength theory which can be suitable to various materials. Therefore, the system of strength theory is completed. The generalized nonlinear strength theory includes a series of the single nonlinear strength theories which have already existed and might appear in the future, such as Mises's criterion, SMP criterion, etc.. The superiority of the system of the generalized nonlinear strength which is suitable to various of materials is verified by the strength tests on clay, rock and concrete.

Key words: fricative material, nonlinearity, generalized strength theory, unified twin shear strength theory, intermediate principal stress, hydrostatic stress

CLC Number: 

  • TU 432
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] FANG Jin-jin, FENG Yi-xin, ZHAO Wei-long, WANG Li-ping, YU Yong-qiong, . Nonlinear constitutive model for intact loess in true tri-axial tests [J]. Rock and Soil Mechanics, 2019, 40(2): 517-528.
[2] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[3] LI Hai-li, ZHANG Chen-rong, LU Kai,. Nonlinear analysis of response of buried pipelines induced by tunneling [J]. , 2018, 39(S1): 289-296.
[4] LIN Qing-hui, YAN Jia-jia, DONG Mei, ZHU Jian-feng,. Influence of principal stress direction and intermediate principal stress parameter on the small strain stiffness of reconstituted loess [J]. , 2018, 39(4): 1369-1376.
[5] ZHU Jiao, XU Han-gang, CHEN Guo-xing, . Comparison of 1D equivalent-linear and nonlinear seismic site responses for quaternary deep sediment layers in Suzhou region [J]. , 2018, 39(4): 1479-1490.
[6] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Experimental investigation on strength characteristic of coarse-grained materials in three-dimensional stress state [J]. , 2018, 39(10): 3581-3588.
[7] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[8] FANG Jin-jin, FENG Yi-xin, SHAO Sheng-jun,. Soil-water characteristics of intact Q3 loess under true triaxial condition [J]. , 2017, 38(9): 2597-2604.
[9] FANG Jin-jin, SHAO Sheng-jun, FENG Yi-xin,. Suction changes of intact Q3 loess based on true triaxial tests [J]. , 2017, 38(4): 934-942.
[10] CHU Zhao-fei, LIU Bao-guo, LIU Kai-yun, SUN Jing-lai. Analytical viscoelastic solutions for lined circular tunnels under two contact conditions in a non-hydrostatic stress field [J]. , 2017, 38(11): 3215-3224.
[11] SONG Xin-jiang , XU Hai-bo, ZHOU Wen-yuan, WANG Wei,. True triaxial test on stress-strain characteristics of cement-soil [J]. , 2016, 37(9): 2489-2495.
[12] Lü Cai-zhong,SUN Ya-li. A generalized SMP criterion for the optimal support of soft rock tunnel and its comparative analysis [J]. , 2016, 37(7): 1956-1962.
[13] ZHAO Yang, CHEN Chang-fu, WANG Chun-zi. An upper-bound limit analysis of the bearing capacity of a capped rigid pile based on unified strength theory [J]. , 2016, 37(6): 1649-1656.
[14] GUO Lin , WANG Yu-ke , WANG Jun , ZHENG Min , WU Ting-yu,. Influence of intermediate principal stress and major principal stress direction on the drainage-induced deformation of soft clay [J]. , 2016, 37(5): 1380-1387.
[15] LI Bin , LIU Yan-zhang , LIN Kun-feng,. Application scope of nonlinear Mohr-Coulomb criterion and its modification [J]. , 2016, 37(3): 637-646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[2] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[3] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[4] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[5] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[6] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[7] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[8] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[9] LI Jian ,TAN Zhong-sheng ,YU Yu ,NI Lu-su. Research on construction procedure for shallow large-span tunnel undercrossing highway[J]. , 2011, 32(9): 2803 -2809 .
[10] MIAO Yu , Lü Jia-he , ZHANG Qing-jun , JIN Xiang-yue , LUO Hui . Cracking mechanism and propagation analysis of asphalt pavement with multi-crack[J]. , 2012, 33(5): 1513 -1518 .