Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (2): 668-677.doi: 10.16285/j.rsm.2017.1687

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Nonlinear load-settlement analysis of pile groups considering pile installation effects

LI Lin1, 2, LI Jing-pei1, 2, SUN De-an3, GONG Wei-bing 1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 3. Department of Civil Engineering, Shanghai University, Shanghai 200072, China
  • Received:2017-08-14 Online:2019-02-11 Published:2019-02-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41272288).

Abstract: Considering the effects of the pile installation on the properties of the soils surrounding the piles, the load transfer models for pile shaft and pile base are established using the exponential function type load transfer curve. Then, according to the deformation mode of the soil around the piles, the stress transfer method is adopted to model the nonlinear behaviour at the pile-soil interface and the shear displacement method is used to evaluate the pile-pile interaction effects. A hybrid calculation method is proposed for assessing the nonlinear load-settlement behaviour of pile groups. The proposed method is verified by the centrifuge model test. Investigations are conducted on the effects of pile installation and nonlinear behaviour on bearing performance of pile groups. The results show that, the strength and stiffness of the soil around the piles are significantly enhanced by the pile installation due to the squeeze effects, which greatly improves the bearing performance of the pile group. The stiffness of pile-soil interface decreases with the increase of the settlement, and hence the pile group exhibits apparent nonlinear behaviour during the loading process.

Key words: pile installation effects, nonlinearity, reinforcement effect, load transfer, centrifugal model test

CLC Number: 

  • TU 473
[1] WANG Yong-guang, LIANG Jian-wen, BA Zhen-ning, . A dynamic nonlinear constitutive model for soil based on modified damping and its implementation in Abaqus [J]. Rock and Soil Mechanics, 2023, 44(8): 2287-2296.
[2] ZHANG Yuan-sheng, LEI Yun-chao, QIANG Xiao-jun, WU Dong-dong, WANG Dong-po, WANG Ji-hua, . Centrifugal model test of slope reinforced by multi-row micro-pile frame structure [J]. Rock and Soil Mechanics, 2023, 44(7): 1983-1994.
[3] CHEN Hui-yun, FENG Zhong-ju, BAI Shao-fen, DONG Jian-song, XIA Cheng-ming, CAI Jie, . Experimental study on load transfer mechanism of bridge pile foundation passing through karst cave [J]. Rock and Soil Mechanics, 2023, 44(5): 1405-1415.
[4] ZHU Sheng-dong, CHEN Guo-xing, CHEN Wei-yun, GAO Wen-sheng, LI Wen-biao, . Influence of soil secondary nonlinearity on 3D seismic responses of a pile-founded nuclear island structure [J]. Rock and Soil Mechanics, 2023, 44(5): 1501-1511.
[5] HUANG Wei, JIAN Wen-bin, YANG Jian, DOU Hong-qiang, LUO Jin-mei, . Prototype test and load transfer characteristic analysis of multi-disk anchor rod [J]. Rock and Soil Mechanics, 2023, 44(2): 520-530.
[6] LAN Jing-yan, CAI Jin-dou, WU Lian-bin, SHI Qing-qi, . Study on variation law of ground motion amplification effects along depth in tunnel site [J]. Rock and Soil Mechanics, 2022, 43(8): 2083-2091.
[7] LEI Hua-yang, WANG Lei, LIU Jing-jin, WANG Peng, ZHANG Wei-di, BO Yu, . Experimental analysis of chemical modification combined with vacuum preloading method for reinforcing dredger fill [J]. Rock and Soil Mechanics, 2022, 43(4): 891-900.
[8] ZHOU Yang, CHEN Yong-hui, KONG Gang-qiang, CHEN Long, CHEN Geng. Pile-soil stress ratio and settlement of in-situ shallow solidification-combined pipe-pile composite foundation under embankment load [J]. Rock and Soil Mechanics, 2022, 43(3): 688-696.
[9] QIU Chao, LI Chuan-xun, LI Hong-jun, . Analytical solutions for one-dimensional nonlinear large-strain consolidation of high compressible soil under a ramp loading [J]. Rock and Soil Mechanics, 2021, 42(8): 2195-2206.
[10] CHEN Cheng, DUAN Yong-da, RUI Rui, WANG Lun. Study of single and two-layer geogrid reinforced ballasted trackbed using pull-out test and discrete element method [J]. Rock and Soil Mechanics, 2021, 42(4): 954-962.
[11] HOU Zhen-kun, TANG Meng-xiong, HU He-song, LI Jian-hua, ZHANG Shu-wen, XU Xiao-bin, LIU Chun-lin, . Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in-situ and physical simulation tests [J]. Rock and Soil Mechanics, 2021, 42(2): 419-429.
[12] ZHU Tan-fang, XIN Peng, YAO Lei-hua, HU Le, HU Bo, . Initiation mechanism of soft rock landslide induced by hydraulic action [J]. Rock and Soil Mechanics, 2021, 42(10): 2733-2740.
[13] DING Chu, YU Wen-rui, SHI Jiang-wei, ZHANG Yu-ting, CHEN Yong-hui, . Centrifuge studies of pile deformation mechanisms due to lateral cyclic loading [J]. Rock and Soil Mechanics, 2020, 41(8): 2659-2664.
[14] ZHU Jian-feng, XU Ri-qing, LUO Zhan-you, PAN Bin-jie, RAO Chun-yi, . A nonlinear constitutive model for soft clay stabilized by magnesia cement considering the effect of solidified agent content [J]. Rock and Soil Mechanics, 2020, 41(7): 2224-2232.
[15] YU Zhao-sheng, CHEN Xiao-bin, ZHANG Jia-sheng, DONG Liang, ABDOULKADER M S. Analysis of the nonlinearity of coefficient of earth pressure at rest and its calculation method for coarse-grained soils [J]. Rock and Soil Mechanics, 2020, 41(6): 1923-1932.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kui, GAO Bo. Study of construction schemes for metro tunnel crossing river and bridge[J]. , 2010, 31(5): 1509 -1516 .
[2] YANG Bing, YANG Jun, CHANG Zai, GAN Hou-yi, SONG Er-xiang. 3-D granular simulation for compressibility of soil-aggregate mixture[J]. , 2010, 31(5): 1645 -1650 .
[3] XIAO Shi-guo,XIAN Fei,WANG Huan-long. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] YE Hai-lin, ZHENG Ying-ren, HUANG Run-qiu, DU Xiu-li, LI An-hong4, XU Jiang-bo. Study of application of strength reduction dynamic analysis method to aseismic design of anti-slide piles for landslide[J]. , 2010, 31(S1): 317 -323 .
[5] ZHANG Zhi-pei, PENG Hui, RAO Xiao. Numerical simulation study of grouting diffusion process in soft soil foundation[J]. , 2011, 32(S1): 652 -0655 .
[6] WU Li-zhou , ZHANG Li-min , HUANG Run-qiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. , 2011, 32(8): 2391 -2396 .
[7] LIU Run , WANG Xiu-yan , LIU Yue-hui , WANG Wu-gang. Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J]. , 2011, 32(S2): 64 -69 .
[8] LIANG Yao-zhe. Analysis of active earth pressure of rigid pile composite foundation[J]. , 2012, 33(S1): 25 -29 .
[9] HAN Jian-xin , LI Shu-cai , LI Shu-chen , YANG Wei-min , WANG Lei . Study of post-peak stress-strain relationship of rock material based on evolution of strength parameters[J]. , 2013, 34(2): 342 -346 .
[10] HUANG Da , CEN Duo-feng , HUANG Run-qiu . Influence of medium strain rate on sandstone with a single pre-crack under uniaxial compression using PFC simulation[J]. , 2013, 34(2): 535 -545 .