Rock and Soil Mechanics ›› 2022, Vol. 43 ›› Issue (3): 688-696.doi: 10.16285/j.rsm.2021.0730

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Pile-soil stress ratio and settlement of in-situ shallow solidification-combined pipe-pile composite foundation under embankment load

ZHOU Yang, CHEN Yong-hui, KONG Gang-qiang, CHEN Long, CHEN Geng   

  1. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China
  • Received:2021-05-13 Revised:2021-06-28 Online:2022-03-22 Published:2022-03-22
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51778212).

Abstract: Ground improvement using a joint technology of combined in-situ shadow solidification and pipe-pile-reinforced foundation is one of effective methods used for deep soft clay treatment under infrastructure embankments. Based on the load transfer theory of the composite foundation, this paper analyzes the embankment filling, solidified layer, pile, soil between piles and underlying layer as a whole, and establishes the calculation method of stress and settlement of composite foundation considering the continuity of stress and settlement deformation. The deformations of pipe piles, the surrounding soil, and the overlying solidified layer are compatible by applying the stress continuity and volume deformation continuity at the bottom of the solidified layer. This paper discusses the influence of the in-situ shadow solidification on the pile-soil stress ratio and settlement of the composite foundation. The established method has been verified via comparisons with field tests data about the joint technology and traditional pipe pile-reinforced foundation. It shows that the pile-soil stress ratio in composite foundation increases linearly with the modulus of the solidified layer (with 1.6 MPa?1). The position of the neutral point of pile moves up with the increase of the solidified layer modulus (between 0.12 and 0.45). Considering the performance and reinforcement effect of curing agents, it is more appropriate to select the curing agent with cement content no more than 11%.

Key words: in-situ shallow solidification, pipe pile-reinforced foundation, load transfer, pile-soil stress ratio

CLC Number: 

  • TU431
[1] HOU Zhen-kun, TANG Meng-xiong, HU He-song, LI Jian-hua, ZHANG Shu-wen, XU Xiao-bin, LIU Chun-lin, . Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in-situ and physical simulation tests [J]. Rock and Soil Mechanics, 2021, 42(2): 419-429.
[2] HE Zhi-jun, LEI Hao-cheng, XIA Zhang-qi, ZHAO Lian-heng. Analysis of settlement and internal force displacement of single pile in multilayer soft soil foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 655-666.
[3] HUANG Yu-hua, XU Lin-rong, ZHOU Jun-jie, CAI Yu, . Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method [J]. Rock and Soil Mechanics, 2020, 41(2): 667-675.
[4] YANG Qing-guang, LIU Xiong, LIU Jie, HE Jie, LIANG Ling-chuan, CHEN Bin. Influence of the pre-grouting in free segment on the pullout test of prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(10): 3317-3325.
[5] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[6] LI Lin, LI Jing-pei, SUN De-an, GONG Wei-bing , . Nonlinear load-settlement analysis of pile groups considering pile installation effects [J]. Rock and Soil Mechanics, 2019, 40(2): 668-677.
[7] FEI Kang, DAI Di, HONG Wei, . A simplified method for working performance analysis of single energy piles [J]. Rock and Soil Mechanics, 2019, 40(1): 70-80.
[8] WANG Shen, LI Hua-min, LI Dong-yin, WANG Wen, . The effect of rib on load transfer of the thread steel resin bolt [J]. , 2018, 39(8): 2805-2813.
[9] LU Qing-yuan, LUO Qiang, JIANG Liang-wei, . Calculation of stress ratio of rigid pile to composite embankment [J]. , 2018, 39(7): 2473-2482.
[10] WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, . Calculation and analysis of load transfer in large-diameter grouted pile in extra-thick fine sand layers [J]. , 2018, 39(4): 1386-1394.
[11] JIANG Wen-yu, LIU Yi, . Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation [J]. Rock and Soil Mechanics, 2018, 39(12): 4554-4560.
[12] HUANG Ming-hua, ZHAO Ming-hua, CHEN Chang-fu. Influence of anchorage length on stress in bolt and its critical value calculation [J]. , 2018, 39(11): 4033-4041.
[13] GUO Hao-ran, QIAO Lan, LI Yuan. Research on the bearing performance of energy piles using an improved load-transfer model on pile-soil interface [J]. , 2018, 39(11): 4042-4052.
[14] LI Lian-xiang, HUANG Jia-jia, FU Qing-hong, CHENG Xiao-yang, HU Feng, . Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load [J]. , 2017, 38(S1): 131-139.
[15] CHEN Chang-fu, ZHAO Xiang-long, WU Yan-quan. Load transfer characteristics of short stiff piles with big caps based on the block displacement method [J]. , 2017, 38(12): 3410-3418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YAO Yang-ping, HOU Wei. Basic mechanical behavior of soils and their elastoplastic modeling[J]. , 2009, 30(10): 2881 -2902 .
[2] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[3] XIANG Tian-bing, FENG Xia-ting, CHEN Bing-rui, JIANG Quan, ZHANG Chuan-qing. Rock failure mechanism and true triaxial experimental study of specimens with single structural plane under three-dimensional stress[J]. , 2009, 30(10): 2908 -2916 .
[4] SHI Yu-ling, MEN Yu-ming, PENG Jian-bing, HUANG Qiang-bing, LIU Hong-jia. Damage test study of different types structures of bridge decks by ground-fissure[J]. , 2009, 30(10): 2917 -2922 .
[5] XIA Dong-zhou, HE Yi-bin, LIU Jian-hua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. , 2009, 30(10): 2923 -2928 .
[6] XU Su-chao, FENG Xia-ting, CHEN Bing-rui. Experimental study of skarn under uniaxial cyclic loading and unloading test and acoustic emission characteristics[J]. , 2009, 30(10): 2929 -2934 .
[7] ZHANG Li-ting, QI Qing-lan, WEI Jing HUO Qian, ZHOU Guo-bin. Variation of void ratio in course of consolidation of warping clay[J]. , 2009, 30(10): 2935 -2939 .
[8] ZHANG Qi-yi. Study of failure patterns of foundation under combined loading[J]. , 2009, 30(10): 2940 -2944 .
[9] YI Jun, JIANG Yong-dong, XUAN Xue-fu, LUO Yun, ZHANG Yu. A liquid-solid dynamic coupling modelof ultrasound enhanced coalbed gas desorption and flow[J]. , 2009, 30(10): 2945 -2949 .
[10] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .