Rock and Soil Mechanics ›› 2020, Vol. 41 ›› Issue (2): 667-675.doi: 10.16285/j.rsm.2019.0050

• Geotechnical Engineering • Previous Articles     Next Articles

Calculation of pile-soil stress in pile-net composite foundation based on improved Terzarghi method

HUANG Yu-hua1, XU Lin-rong1, 2, ZHOU Jun-jie1, CAI Yu1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. National Engineering Laboratory for High Speed Railway Construction, Central South University, Changsha, Hunan 410075, China
  • Received:2019-01-09 Revised:2019-06-06 Online:2020-02-11 Published:2020-02-12
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51778634).

Abstract: The pile-soil stress ratio is an important parameter for calculating the bearing capacity and settlement of the pile-net composite foundation, which is related to the consolidation settlement of the foundation and has obvious time-varying characteristics. The calculation theory of loosening earth pressure based on Terzarghi soil arch model is discussed on the assumption that the soil of sliding surface reaches limit state, and it is not suitable for the calculation of pile-soil stress under the condition of small deformation of pile-net foundation. Therefore, on the basis of Terzarghi model, the equivalent stiffness ideal elastic-plastic model is adopted for the transfer function of relative displacement surface, and the theoretical solutions of pile-soil stress and soil arch height are derived by combining the equilibrium equation of soil element with the deformation coordination equation. The quantitative variation of pile-soil stress and the membrane effect with each design parameter is analyzed systematically. The results show that the improved method is more applicable than the existing arching algorithm model. With the increase of pile-soil differential settlement, the arching height and pile-soil stress ratio gradually increased, and the arching ratio decreased in hyperbolic shape, while the membrane effect works gradually. The arching effect is significantly weakened by increasing the filling load, and the pile-soil stress ratio decreases with the increase of pile spacing and increases with the increase of cohesive force. Based on the improved method and the field measured data, the time-varying characteristics of pile-soil stress are analyzed, and the rationality of the method is verified. The method proposed can be used as a reference for the calculation of pile-soil stress on the pile-netted foundation.

Key words: pile-net composite foundation, pile-soil stress ratio, soil arching effect, membrane effect, time-varying characteristics

CLC Number: 

  • TU 473
[1] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[2] ZHUANG Yan, LI Shao-bang, CUI Xiao-yan, DONG Xiao-qiang, WANG Kang-yu, . Investigation on dynamic response of subgrade and soil arching effect in piled embankment under high-speed railway loading [J]. Rock and Soil Mechanics, 2020, 41(9): 3119-3130.
[3] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[4] CHEN Zheng, HE Ping, YAN Du-min, GAO Hong-jie, . A method to calculate rational spacing between pipes in pipe roofs considering soil arching effects [J]. Rock and Soil Mechanics, 2019, 40(5): 1993-2000.
[5] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[6] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[7] LAI Feng-wen, CHEN Fu-quan, WAN Liang-long,. Vertical stress calculation of shallow foundations based on partially developed soil arching effect [J]. , 2018, 39(7): 2546-2554.
[8] XU Chang-jie, LIANG Lu-ju, CHEN Qi-zhi, LIU Yuan-kun,. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone [J]. , 2018, 39(6): 1927-1934.
[9] JIANG Wen-yu, LIU Yi, . Determination of neutral plane depth and pile-soil stress ratio of the rigid pile composite foundation [J]. Rock and Soil Mechanics, 2018, 39(12): 4554-4560.
[10] LI Lian-xiang, HUANG Jia-jia, FU Qing-hong, CHENG Xiao-yang, HU Feng, . Centrifuge experimental study of mechanical properties of composite foundation with different replacement rates under additional load [J]. , 2017, 38(S1): 131-139.
[11] YANG Gui, WANG Yang-yang, LIU Yan-chen, . Analysis of active earth pressure on retaining walls based on curved sliding surface [J]. , 2017, 38(8): 2182-2188.
[12] LI Rui-lin, ZHOU Guo-qing, LIN Chao, ZHAO Guang-si, CHEN Guo-zhou,. Solution of earth pressure between slip surfaces under non-limit state considering soil arching effect [J]. , 2017, 38(11): 3145-3153.
[13] SHEN Cai-hua, WANG Yuan, LI He-wen, HU Yu-tian,. Determination of pile-soil stress ratio for compaction foundation using cavity expansion theory [J]. , 2017, 38(10): 2873-2880.
[14] SUN Xiao-hao, MIAO Lin-chang, LIN Hai-shan. Arching effect of soil ahead of working face in shield tunnel in sand with various depths [J]. , 2017, 38(10): 2980-2988.
[15] XU Chao ,LIN Xiao ,SHEN Pan-pan,. Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments [J]. , 2016, 37(7): 1825-1831.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[2] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
[3] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
[4] WEI Xin-jiang,GUO Zhi-wei,WEI Gang,ZHANG Shi-min. Study of accident mechanism of shield launching considering seepage[J]. , 2011, 32(1): 106 -110 .
[5] SHI Dan-da, ZHOU Jian, JIA Min-cai, YANG Yong-xiang. Back analysis of parameters and long-term settlement prediction of harbor soft ground considering its creep behavior[J]. , 2009, 30(3): 746 -750 .
[6] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .
[7] WANG Hong-liang , FAN Peng-xian , WANG Ming-yang , LI Wen-pei , QIAN Yue-hong. Influence of strain rate on progressive failure process and characteristic stresses of red sandstone[J]. , 2011, 32(5): 1340 -1346 .
[8] YANG Jian-ping, CHEN Wei-zhong, DAI Yong-hao. Study of scale effect of deformation modulus of fractured rock mass — partⅠ: Finite element method[J]. , 2011, 32(5): 1538 -1545 .
[9] ZHOU Yi, LI Shu-cai, LI Li-ping, ZHAO Yan, LIU Qin, YUAN Xiao-shuai. Study of influence of formation conditions on construction process rules of ultralarge section and weak broken wall rock tunnel by numerical simulation[J]. , 2011, 32(S2): 673 -678 .
[10] YING Hong-wei , ZHENG Bei-bei , XIE Xin-yu. Study of passive earth pressures against translating rigid retaining walls in narrow excavations[J]. , 2011, 32(12): 3755 -3762 .