›› 2013, Vol. 34 ›› Issue (S1): 444-450.

• Numerical Analysis • Previous Articles     Next Articles

Numerical simulation of thermo-hydro-mechanical coupling around underground pipelines in patchy permafrost region

LIU Jian-jun,XIE Jun   

  1. School of Civil Engineering and Architecture,Southwest Petroleum University,Chengdu 610500,China
  • Received:2012-11-09 Online:2013-08-30 Published:2014-06-09

Abstract: Building a patchy permafrost physical model, which is composed of multiple formations, the paper researches the effect of thermo-hydro-mechanical(T-H-M) coupling around the buried oil pipelines in Tahe on the base of considering the effect of environmental temperature and flow medium temperature in the pipelines, and analyses the stress of the buried pipelines and takes a strength calculation on the pipelines. The distribution of stress and sedigraph are acquired by the multiphysical fields coupling COMSOL Multiphysics software, which is used to simulate two kinds of working condition of T-H-M coupling and uncoupling. The numerical simulation results indicate that temperature, water phase transition and water migration influence the stress field greatly. What’s more, the coupling among the moisture field, the temperature field and the stress field is very remarkable. Because of temperature change, patchy permafrost takes on freezing or thawing, which results in stress concentration and settlement around the pipelines, so as to harm the safety of buried pipelines.

Key words: patchy permafrost, oil pipeline, numerical simulation, porous medium, multifield coupling

CLC Number: 

  • TU 445
[1] LI Fan-fan, CHEN Wei-zhong, LEI Jiang, YU Hong-dan, MA Yong-shang, . Study of mechanical properties of claystone based on plastic damage [J]. Rock and Soil Mechanics, 2020, 41(1): 132-140.
[2] XIA Kun, DONG Lin, PU Xiao-wu, LI Lu. Earthquake response characteristics of loess tableland [J]. Rock and Soil Mechanics, 2020, 41(1): 295-304.
[3] ZHOU Feng-xi, LIU Hong-bo, CAI Yuan-qiang, . Analysis of propagation characteristics of Rayleigh waves in saturated porothermoelastic media [J]. Rock and Soil Mechanics, 2020, 41(1): 315-324.
[4] GUO Yuan-cheng, LI Ming-yu, ZHANG Yan-wei, . Incremental analytical method for prestressed anchor and soil nail wall composite support system [J]. Rock and Soil Mechanics, 2019, 40(S1): 253-258.
[5] YAN Guo-qiang, YIN Yue-ping, HUANG Bo-lin, ZHANG Zhi-hua, DAI Zhen-wei, . Formation mechanism and deformation characteristics of Jinjiling landslide in Wushan, Three Gorges Reservoir region [J]. Rock and Soil Mechanics, 2019, 40(S1): 329-340.
[6] LIU Hong-yan. Influence of macroscopic and mesoscopic flaws on mechanical behavior of rock mass and slope stability [J]. Rock and Soil Mechanics, 2019, 40(S1): 431-439.
[7] JIN Ai-bing, LIU Jia-we, ZHAO Yi-qing, WANG Ben-xin, SUN Hao, WEI Yu-dong, . Mechanical characteristics analysis of granite under unloading conditions [J]. Rock and Soil Mechanics, 2019, 40(S1): 459-467.
[8] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[9] WU Mei-su, ZHOU Cheng, WANG Lin, TAN Chang-ming, . Numerical simulation of the influence of roots and fissures on hydraulic and mechanical characteristics of the soil [J]. Rock and Soil Mechanics, 2019, 40(S1): 519-526.
[10] WU Jin-liang, HE Ji, . Composite element model for dynamic excavation simulation of rock slope [J]. Rock and Soil Mechanics, 2019, 40(S1): 535-540.
[11] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[12] SUN Feng, XUE Shi-feng, PANG Ming-yu, TANG Mei-rong, ZHANG Xiang, LI Chuan, . 3D simulation of fracture growth from perforation to near-wellbore in horizontal wells based on continuum damage model [J]. Rock and Soil Mechanics, 2019, 40(8): 3255-3261.
[13] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[14] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[15] ZHANG Cong, LIANG Jing-wei, YANG Jun-sheng, CAO Lei, XIE Yi-peng, ZHANG Gui-jin, . Research on the diffusion mechanism and application of pulsate grouting in embankment and dam [J]. Rock and Soil Mechanics, 2019, 40(4): 1507-1514.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, JIANG Yu-jing, WANG Wei-ming, LI Ting-chun. Development and application of an improved numeric control shear-fluild coupled apparatus for rock joint[J]. , 2009, 30(10): 3200 -3209 .
[2] YU Xiao-jun,SHI Jian-yong,XU Yang-bin. Modelling disturbed state and anisotropy of natural soft clays[J]. , 2009, 30(11): 3307 -3312 .
[3] GAO Wei. Analysis of stability of rock slope based on ant colony clustering algorithm[J]. , 2009, 30(11): 3476 -3480 .
[4] XU Bin,YIN Zong-ze,LIU Shu-li. Experimental study of factors influencing expansive soil strength[J]. , 2011, 32(1): 44 -50 .
[5] DAI Ren-ping,GUO Xue-bin,GONG Quan-mei,PU Chuan-jin,ZHANG Zhi-cheng. SHPB test on blasting damage protection of tunnel surrounding rock[J]. , 2011, 32(1): 77 -83 .
[6] YANG Yang, YAO Hai-lin, LU Zheng. Model of subgrade soil responding to change of atmosphere under evaporation and its influential factors[J]. , 2009, 30(5): 1209 -1214 .
[7] TANG Chao-sheng,SHI Bin,GAO Wei,LIU Jin. Single fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. , 2009, 30(8): 2225 -2230 .
[8] DENG Ya-hong,XIA Tang-dai,PENG Jian-bing,LI Xi-an,HUANG Qiang-bing. Research on shear particle system method of natural frequency of horizontal layered soils[J]. , 2009, 30(8): 2489 -2494 .
[9] . [J]. , 2011, 32(7): 2236 -2240 .
[10] CHU Xi-hua. A generation method for numerical specimen of granular materials by sort of coordinates[J]. , 2011, 32(9): 2852 -2855 .