›› 2013, Vol. 34 ›› Issue (11): 3166-3172.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Ability analysis of HCA to imitate stress path of soil caused by train load

TAO Ming-an1,SHEN Yang1,WANG Xin1,DAI Bo2   

  1. 1. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210098, China; 2. Dayu College, Hohai University, Nanjing 210098, China
  • Received:2013-05-29 Online:2013-11-09 Published:2013-11-11

Abstract: As anisotropic granular materials, soil’s dynamic characteristics depend on the stress path. Foundation soil is in heart-shaped line rotation stress path of the maximum shear stress space under train load. Yet it is not reported that the heart-shaped line stress path is imitated in laboratory test. The simplified form of the soil’s dynamic response is proposed, which is justified by analyzing the stress path of foundation soil caused by train load. For imitating the stress characteristics produced by train load, the loading methods of three types of hollow cylindrical apparatus (HCA) are derived: (1) The two-directional vibration HCA can achieve the heart-shaped line stress path by determining the forms of axial force and torque. The variation of spherical stress p is similar to the load waveform of axial force. When the internal pressure is equal to external pressure, the variation of coefficient of intermediate principal stress b will like cosine curve. (2) When the three-directional vibration HCA imitates stress characteristics produced by train load, p can remain unchanged or b can be kept at the constant of 0.5. (3) With the control of the axial force, torque as well as the internal and external pressures, the four-directional vibration HCA can imitate stress characteristics of the foundation soil under train load. By setting a constant b, the linear relationship between p and q can be realized. Besides the constraint conditions on loading parameters are derived, under which the normal stress in soil is compressive stress and the direction of intermediate principal stress is kept at the diametrical direction all along.

Key words: train load, stress path, hollow cylinder apparatus (HCA), principal stress axis rotation

CLC Number: 

  • U 238
[1] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[2] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[3] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[4] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of the influence of unloading rate on the shear mechanical properties of undisturbed expansive clay [J]. Rock and Soil Mechanics, 2019, 40(10): 3758-3766.
[5] GUO Ying, LIU Xiao-dong. Influence of sample-preparing methods on CD test results of saturated silty sand in different stress paths [J]. Rock and Soil Mechanics, 2019, 40(10): 3783-3788.
[6] ZHANG Kun-yong, LI Wei, Charkley Nai Frederick, CHEN Shu,. True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction [J]. , 2018, 39(9): 3270-3276.
[7] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[8] ZHOU Hui, JIANG Yue, LU Jing-jing, HU Da-wei, ZHANG Chuan-qing, CHEN Jun, LI Zhen, . Study of hollow cylinder torsional apparatus for rock [J]. , 2018, 39(5): 1917-1922.
[9] ZHOU Hui, JIANG Yue, LU Jing-jing, HU Da-wei,ZHANG Chuan-qing, CHEN Jun, LI Zhen, . Development of hollow cylinder torsional apparatus for rock [J]. , 2018, 39(4): 1535-1542.
[10] NIU Ting-ting, LIU Han-long, DING Xuan-ming, CHEN Yun-min,. Piled embankment model test on vibration characteristics under high-speed train loads [J]. , 2018, 39(3): 872-880.
[11] XUE Long, WANG Rui, ZHANG Jian-min, . DEM numerical test method for granular matter under complex 3D loading [J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690.
[12] KONG Xian-jing, ZHU Fa-yong, LIU Jing-mao, ZOU De-gao, NING Fan-wei, . Stress dilatancy of rockfill material under different loading directions [J]. , 2018, 39(11): 3915-3920.
[13] CHEN Yong, YANG Ying, CAO Ling, . Deformation characteristics simulation of bank slope saturated soils under special stress paths [J]. , 2017, 38(3): 672-677.
[14] SHEN Yang , XU Hai-dong , WANG Bao-guang , LIU Han-long , . Strain characteristics of non-coaxiality under heart- shaped stress path caused by train loads in soft clay [J]. , 2017, 38(1): 1-9.
[15] ZHOU Zheng-long, CHEN Guo-xing, WU Qi. Analysis of capabilities of stress paths of HCA to simulate principal stress rotation under four-direction dynamic loads [J]. , 2016, 37(S1): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] REN Song, JIANG De-yi, YANG Chun-he, TENG Hong-wei. Creep tests on shale of cracking position in Gonghe tunnel and simulating it by DEM[J]. , 2010, 31(2): 416 -421 .
[3] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[4] LI Rong-tao. A coupled chemoplastic-damage constitutive model for plain concrete subjected to high temperature[J]. , 2010, 31(5): 1585 -1591 .
[5] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[6] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[7] WANG Xie-qun,ZHANG You-xiang,ZOU Wei-lie,XIONG Hai-fan. Numerical simulation for unsaturated road-embankment deformation and slope stability under rainfall infiltration[J]. , 2010, 31(11): 3640 -3644 .
[8] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[9] CHEN Xiang-hao,DENG Jian-hui,CHEN Ke-wen,ZHENG Jun,MENG Fan-li,XU Liang. Stress monitoring and analysis of gravelly soil corewall in high rockfill dam during construction[J]. , 2011, 32(4): 1083 -1088 .
[10] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .