›› 2006, Vol. 27 ›› Issue (11): 2011-2014.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Recognition of critical slip surface based on GA and SVM

ZHAO Hong-bo1, 2   

  1. 1. Key Laboratory of Rock and Soil Mechanics, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 2. Department of Civil Engineering, Shaoxing University, Shaoxing 312000, China
  • Received:2005-06-06 Online:2006-11-10 Published:2013-12-04

Abstract: A new approach to recognize critical slip surface is proposed by combining the support vector machine and genetic algorithm.The learning and testing samples produced in orthogonal experiment are used to train the support vector machine. Thus, the support vector machine is used to describe the relationship between slip surface and factor of safety. Then genetic algorithm is adopted to search critical slip surface in their global ranges. This approach was applied to two examples. The results are satisfactory.

Key words: slope, critical slip surface, support vector machine, genetic algorithm, limit equilibrium analysis

CLC Number: 

  • TB 115
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] YU Guo, XIE Mo-wen, SUN Zi-hao, LIU Peng. Construction of approximation function of normal stress distribution on sliding surface of three-dimensional symmetrical slope based on GIS [J]. Rock and Soil Mechanics, 2019, 40(6): 2332-2340.
    [2] YANG Jie, MA Chun-hui, CHENG Lin, LÜ Gao, LI Bin, . Research advances in the deformation of high-steep slopes and its influence on dam safety [J]. Rock and Soil Mechanics, 2019, 40(6): 2341-2353.
    [3] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
    [4] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
    [5] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
    [6] ZHU Ren-jie, CHE Ai-lan, YAN Fei, WEN Hai, GE Xiu-run, . Dynamic evolution of rock slope with connective structural surface [J]. Rock and Soil Mechanics, 2019, 40(5): 1907-1915.
    [7] LIU Han-xiang, XU Qiang, ZHU Xing, ZHOU Xiao-peng, LIU Wen-de. Marginal spectrum characteristics of the rock slope with a soft interlayer during an earthquake [J]. Rock and Soil Mechanics, 2019, 40(4): 1387-1396.
    [8] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
    [9] LI Shi-jun, MA Chang-hui, LIU Ying-ming, HAN Yu-zhen, ZHANG Bin, ZHANG Ga, . Centrifuge model tests and numerical simulation on progressive failure behavior of slope above a mine-out area [J]. Rock and Soil Mechanics, 2019, 40(4): 1577-1583.
    [10] WANG Qi , SUN Hui-bin , JIANG Bei , GAO Song , LI Shu-cai , GAO Hong-ke, . A method for predicting uniaxial compressive strength of rock mass based on digital drilling test technology and support vector machine [J]. Rock and Soil Mechanics, 2019, 40(3): 1221-1228.
    [11] WANG Zhen, CAO Lan-zhu, WANG Dong, . Evaluation on upper limit of heterogeneous slope stability [J]. Rock and Soil Mechanics, 2019, 40(2): 737-742.
    [12] WANG Qi-qian, ZHOU Hong-fu, FU Wen-xi, YE Fei, . Analysis for influence of water flow drag force on stability of slope shallow soil [J]. Rock and Soil Mechanics, 2019, 40(2): 759-766.
    [13] JU Neng-pan, DENG Tian-xin, LI Long-qi, JIANG Jin-yang, ZHANG Chen-yang. Centrifugal shaking table test on toppling deformation mechanism of steep bedding slope under strong earthquake [J]. Rock and Soil Mechanics, 2019, 40(1): 99-108.
    [14] WANG Wen-pei, LI Bin, FENG Zhen, ZHANG Bo-wen, GAO Yang, . Failure mechanism of a high-steep rock slope considering site effect [J]. Rock and Soil Mechanics, 2019, 40(1): 297-304.
    [15] ZHANG Wen-sheng, LUO Qiang, JIANG Liang-wei, LI Ang, . Reliability analysis of soil slope considering moment estimation bias using small sample geotechnical parameters [J]. Rock and Soil Mechanics, 2019, 40(1): 315-324.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
    [2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
    [3] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
    [4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
    [5] LI Hua-ming, JIANG Guan-lu, LIU Xian-feng. Study of dynamic characteristics of saturated silty soil ground treated by CFG columns[J]. , 2010, 31(5): 1550 -1554 .
    [6] JIANG Yong-dong, XIAN Xue-fu,YIN Guang-zhi, LI Xiao-hong. Acoustic emission, fractal and chaos characters in rock stress-strain procedure[J]. , 2010, 31(8): 2413 -2418 .
    [7] MENG Qing-shan,KONG Ling-wei,CHEN Neng-yuan,FAN Jian-hai,GUO Gang. Centrifugal model test on slope supporting with pile-anchor combined retaining wall[J]. , 2010, 31(11): 3379 -3384 .
    [8] WU Ai-hong, CAI Liang-cai, GU Qiang-kang. Research on ground treatment of airport with sulphate saline soil by heavy cover replacement technique[J]. , 2010, 31(12): 3880 -3886 .
    [9] LIU Wen-lian, WEI Li-de. Study of calculation model of anchors in strength reduction FEM[J]. , 2010, 31(12): 4021 -4026 .
    [10] DONG Xiao-qiang,BAI Xiao-hong,Lü Yong-kang,XU Pei-hong. Experimental study of effects of pollution on electric resistivity characteristics of soil-cement[J]. , 2011, 32(1): 91 -94 .