›› 2005, Vol. 26 ›› Issue (4): 547-552.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Displacement back analysis of embankment dam based on neural network and evolutionary algorithm

ZHANG Bing-yin, YUAN Hui-na,LI Quan-ming   

  1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
  • Received:2003-12-31 Online:2005-04-09 Published:2013-12-19

Abstract: A new approach of displacement back analysis is proposed by combining the neural network and evolutionary algorithm. The neural network with optimal architecture trained by evolutionary algorithm and Vogl algorithm is used to substitute the time-consuming finite element analysis. The convergence of search is improved and speeded up by evolution strategies such as multi-population. The proposed approach is verified by applying it to the displacement back analysis of Maopingxi embankment dam in Three Gorges Project: and the influence of generation number and sample size on the simulation ability of neural network is studied.

Key words: artificial neural network, evolutionary algorithm, evolution strategies, displacement back analysis

CLC Number: 

  • TB 115
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
  • [1] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
    [2] WANG Shao-jie, LU Ai-zhong, ZHANG Xiao-li. Analytical method of displacement back analysis for horseshoe tunnel excavated in transverse isotropic rock mass [J]. , 2018, 39(S1): 495-504.
    [3] TIAN Mao-lin, XIAO Hong-tian, YAN Qiang-gang,. Displacement back analysis of rock parameters of Hoek-Brown criterion using nonlinear regression method [J]. , 2017, 38(S1): 343-350.
    [4] ZHANG She-rong, HU An-kui, WANG Chao, PENG Zhen-hui, . Three-dimensional intelligent inversion method for in-situ stress field based on SLR-ANN algorithm [J]. , 2017, 38(9): 2737-2745.
    [5] YUAN Wen-hua. Back analysis of viscoelasto-plastic constitutive parameters of artificial frozen soil [J]. , 2013, 34(11): 3091-3095.
    [6] LIU Hui-bo , XIAO Ming , ZHANG Zhing-guo , CHEN Jun-tao . Displacement back analysis of parameter field of blasting excavation damaged zone around openings considering spatial effect [J]. , 2012, 33(7): 2133-2141.
    [7] SHI Yong-qiang , ZHAO Jian-bin , YANG Jun. Optimized neural network model for predicting ultimate bearing capacity of statically-pressured pipe pile based on principal component analysis [J]. , 2011, 32(S2): 634-640.
    [8] XIAO Ming-zhao,ZHOU Cheng-hao ,CHENG Yun,FENG Xiao-la ,YANG Jun-mei. Application of finite elements and modified simplex method jointed programming technology to displacement back analysis [J]. , 2011, 32(3): 899-904.
    [9] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis [J]. , 2011, 32(2): 510-515.
    [10] ZHANG Yong-hui, SHENG Qian, LENG Xian-lun, ZHU Ze-qi. Two dimensional displacement back analysis of left bank slope of Longtan hydropower station [J]. , 2010, 31(S2): 396-401.
    [11] SUN Jun,QI Yu-liang. Normal calculation-back analysis of surrounding rock stability of subsee tunnel [J]. , 2010, 31(8): 2353-2360.
    [12] WEN Jian-hua,WU Dai-hua,CHEN Jun-ming,XIA Yin-fei. Parameter inversion of viscoelastic cavern displacements based on hierarchical pattern search [J]. , 2010, 31(3): 967-970.
    [13] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS [J]. , 2009, 30(7): 2197-2202.
    [14] LIU Kai-yun,QIAO Chun-sheng,LIU Bao-guo. Research on elastoplastic displacement back analysis method based on GA-GRNN algorithm in three-dimension of Wushi tunnel [J]. , 2009, 30(6): 1805-1809.
    [15] WU Kai,SHENG Qian,MEI Song-hua,LI Jia. A model of PSO-LSSVM and its application to displacement back analysis [J]. , 2009, 30(4): 1109-1114.
    Viewed
    Full text


    Abstract

    Cited

      Shared   
      Discussed   
    [1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
    [2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
    [3] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
    [4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
    [5] GUO Bao-hua. Numerical analysis of hydraulic fracturing on single-holed rock specimens[J]. , 2010, 31(6): 1965 -1970 .
    [6] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
    [7] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
    [8] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
    [9] XU Zhi-jun, ZHENG Jun-jie, ZHANG Jun, MA Qiang. Application of cluster analysis and factor analysis to evaluation of loess collapsibility[J]. , 2010, 31(S2): 407 -411 .
    [10] DENG Zong-wei, LENG Wu-ming, LI Zhi-yong, YUE Zhi-ping. Finite element analysis of time effect for coupled problem of temperature and stress fields in slope supported by shotcrete[J]. , 2009, 30(4): 1153 -1158 .