›› 2006, Vol. 27 ›› Issue (12): 2246-2249.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Excavation problems induced by pile driving and their treatment

JIAO Zhi-bin, WANG Jian-ping, LI Jing-lin   

  1. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2005-04-07 Online:2006-12-11 Published:2013-12-09

Abstract: The deflection of precast piles and excavation problems induced by pile driving are introduced through an engineering case of pile foundation treatment of a power plant. The treatment and effectiveness by use of prefabricated drains method to dissipate the excess pore pressure by pile driving are also introduced under the condition without external loads. The excavation problems of the main power house under high pore pressure is solved; and factors related with prefabricated drains to dissipate pore pressure are analyzed. The observed results and engineering practice show that the pile foundation treatment by use of prefabricated drains is fast and economic; and it employs no external loads, however, the treatment effectiveness relates with the horizontal drainage system.

Key words: pile foundation treatment, excess pore pressure, precast pile, prefabricated drains, excavation

CLC Number: 

  • TU 413
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GU Dan-ping, LING Tong-hua, . Analysis of bearing ratio of cement soil and displacement at the top of wall for soil mixing wall construction method of cantilever type [J]. Rock and Soil Mechanics, 2019, 40(5): 1957-1965.
[2] ZHANG Kun-yong, ZANG Zhen-jun, LI Wei, WEN De-bao, CHARKLEY Frederick Nai, . Three-dimensional elastoplastic model of soil with consideration of unloading stress path and its experimental verification [J]. Rock and Soil Mechanics, 2019, 40(4): 1313-1323.
[3] LIU Nian-wu, CHEN Yi-tian, GONG Xiao-nan, YU Ji-tao, . Analysis of deformation characteristics of foundation pit of metro station and adjacent buildings induced by deep excavation in soft soil [J]. Rock and Soil Mechanics, 2019, 40(4): 1515-1525.
[4] KANG Yan-fei, CHEN Jie, JIANG De-yi, LIU Wei, FAN Jin-yang, WU Fei, JIANG Chang-qi, . Damage self-healing property of salt rock after brine immersion under different temperatures [J]. Rock and Soil Mechanics, 2019, 40(2): 601-609.
[5] GUO Shuai-jie, SONG Xu-guo, . Jacking resistance evaluation method of prefabricated diaphragm wall based on laboratory experiment [J]. Rock and Soil Mechanics, 2019, 40(1): 269-274.
[6] WU Chang-jiang, SUN Zhao-hua, LAI Yun-jin, BAO Hua, . Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region [J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253.
[7] ZHANG Xiao, XIAO Jun-hua, NONG Xing-zhong, GUO Jia-qi, WU Nan, . Analysis of influenced zone of foundation pit excavation adjacent to bridge pile foundation using HS-Small constitutive model [J]. Rock and Soil Mechanics, 2018, 39(S2): 263-273.
[8] WANG Ke-zhong, JIN Zhi-hao, YANG Mai-zhen, LIU Xian-liang, LIU hua, . Permeability stability study of overhang rock cofferdam during excavating foundation pit of water intake tower [J]. Rock and Soil Mechanics, 2018, 39(S2): 415-422.
[9] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[10] HOU Gong-yu, LI Xiao-rui, LIANG Hong-yao, LIANG Jin-ping, ZHOU Meng-hui, CUI Yong-ke,. Research on proportion of high strength gypsum materials and its application to excavation unloading test of surrounding rock specimen(thick wall cylinder) [J]. , 2018, 39(S1): 159-166.
[11] ZHOU Yong, ZHU Ya-wei,. Interaction between pile-anchor supporting structure and soil in deep excavation [J]. , 2018, 39(9): 3246-3252.
[12] ZHANG Yu-wei, XIE Yong-li, WENG Mu-sheng,. Centrifugal test on influence of asymmetric foundation excavation to an underlying subway tunnel [J]. , 2018, 39(7): 2555-2562.
[13] ZHOU Ze-lin, CHEN Shou-gen, TU Peng, ZHANG Hai-sheng, . Coupling method for analyzing the influence on existing tunnel due to adjacent foundations pit excavation [J]. , 2018, 39(4): 1440-1449.
[14] YAN Shu-wang, ZHANG Jing-jing, TIAN Ying-hui, CHEN Hao,. Experiment and theory research on the pore pressure unloading characteristics of saturated clay under isotropic consolidation conditions [J]. , 2018, 39(3): 775-781.
[15] ZHAO Jin-shuai, FENG Xia-ting , JIANG Quan, CHEN Bing-rui, XIAO Ya-xun,HU Lei, FENG Guang-liang, LI Peng-xiang,. Analysis of microseismic characteristics and stability of underground caverns in hard rock with high stress using framing excavation method [J]. , 2018, 39(3): 1020-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Yong. Research on calculation method of double-row anti-sliding structure under sliding surface[J]. , 2009, 30(10): 2971 -2977 .
[2] LI Hong-bo,GUO Xiao-hong. Research on calculation metheods of earth pressure on muti-arch tunnel for highway[J]. , 2009, 30(11): 3429 -3434 .
[3] QU Wan-bo, LIU Xin-rong, FU Yan, QIN Xiao-ying. Numerical simulation of preliminary lining of large section crossing tunnels constructed with PBA method[J]. , 2009, 30(9): 2799 -2804 .
[4] WANG Chuan-ying, HU Pei-liang, SUN Wei-chun. Method for evaluating rock mass integrity based on borehole camera technology[J]. , 2010, 31(4): 1326 -1330 .
[5] TAN Yun-zhi, KONG Ling-wei, GUO Ai-guo, WAN Zhi. Capillary effect of moisture transfer and its numerical simulation of compacted laterite soil[J]. , 2010, 31(7): 2289 -2294 .
[6] WANG Sheng-xin, LU Yong-xiang, YIN Ya-xiong, GUO Ding-yi. Experimental study of collapsiblity of gravel soil[J]. , 2010, 31(8): 2373 -2377 .
[7] WANG Yun-gang, XIONG Kai, LING Dao-sheng. Upper bound limit analysis of slope stability based on translational and rotational failure mechanism[J]. , 2010, 31(8): 2619 -2624 .
[8] LONG Zhao,ZHAO Ming-hua,ZHANG En-xiang,LIU Jun-long. A simplified method for calculating critical anchorage length of bolt[J]. , 2010, 31(9): 2991 -2994 .
[9] WEI Xin-jiang,GUO Zhi-wei,WEI Gang,ZHANG Shi-min. Study of accident mechanism of shield launching considering seepage[J]. , 2011, 32(1): 106 -110 .
[10] QI Jing-jing,XU Ri-qing,WEI Gang. Research on calculation method of soil 3D displacement due to shield tunnel construction[J]. , 2009, 30(8): 2442 -2446 .