›› 2005, Vol. 26 ›› Issue (5): 813-816.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Visualization of finite element numerical analysis results in foundation pit engineering

WU Ya-jun1, 2, LUAN Mao-tian2~4   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2.Intsitute of Geotechncal Engineering, School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116024 , China; 3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China; 4. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2004-01-13 Online:2005-05-10 Published:2013-12-17

Abstract: The procedure of visual post process based on double scanning beams method is proposed considering the characteristics of construction mechanics in deep foundation pit engineering. The principle and the implementation procedure of the double scanning beams method are presented. The programming for visual process class is made and the class is incorporated into the objective-oriented program for finite element analysis of deep foundation pit excavation and bracing. Through a numerical example of deep foundation pit, it is shown that the processing effect by the proposed method is perfect.

Key words: visual post process, nephogram, contour/isogram, double scanning beam, isoparameter finite elements

CLC Number: 

  • TU 473
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] GUO Zhao-sheng, HE Wu-bin, BAI Xiao-hong. Pseudo-static model experiment of pile-cap-soil system [J]. , 2018, 39(9): 3321-3330.
[2] ZHOU Jia-jin, GONG Xiao-nan, YAN Tian-long, ZHANG Ri-hong, . Behavior of sand filled nodular piles under compression in soft soil areas [J]. , 2018, 39(9): 3425-3432.
[3] YIN Jun-fan, LEI Yong, CHEN Qiu-nan, LIU Yi-xin, DENG Jia-zheng,. Upper bound analysis of the punching shear failure of cave roof in karst area [J]. , 2018, 39(8): 2837-2843.
[4] DAI Guo-liang, WAN Zhi-hui, ZHU Ming-xing, GONG Wei-ming, . The model of grout migration height for pressured grouting at pile tip based on time-dependent behavior of viscosity and its engineering application [J]. , 2018, 39(8): 2941-2950.
[5] XIAO Yong-jie, CHEN Fu-quan, DONG Yi-zhi . Penetration speed of sleeve for cast-in-place pile installed in sand by high frequency vibratory hammers using Gudehus-Bauer hypoplastic model [J]. , 2018, 39(8): 3011-3019.
[6] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[7] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
[8] WEI Huan-wei, SUN chuan, WANG Jian-qiang, LI Yu, LIU Cong, ZHANG Wei,. Model test of combined foundation of piles-diaphragm wall under surcharge [J]. , 2018, 39(S1): 203-210.
[9] ZONG Zhong-ling, LU Xian-long, LI Qin-song,. Comparison test of compression and uplift on pressure-static and grouting micropiles [J]. , 2018, 39(S1): 362-368.
[10] WANG Xiang-ying, CHEN Yu-min, JIANG Qiang, LIU Han-long, . Soil pressures of the anti-liquefaction rigid-drainage pile during pile driving [J]. , 2018, 39(6): 2184-2192.
[11] DAI Xiao-ru, WANG Jian-hua, FAN Yi-fei, . Issues of numerical simulation of the spudcan penetration based on CEL method [J]. , 2018, 39(6): 2278-2286.
[12] LIU Hai-feng, ZHU Chang-qi, MENG Qing-shan, WANG Xing, . Model test on rock-socketed pile in reef limestone [J]. , 2018, 39(5): 1581-1588.
[13] HUANG Jun-jie, WANG Wei, SU Qian, LI Ting, WANG Xun,. Deformation and failure modes of embankments on soft ground reinforced by plain concrete piles [J]. , 2018, 39(5): 1653-1661.
[14] LIU Lin-chao, XIAO Qi-dan, YAN Qi-fang. Vertical vibration of a single pipe pile in saturated soil with 3D wave model [J]. , 2018, 39(5): 1720-1730.
[15] LI Hong-jiang, TONG Li-yuan, LIU Song-yu, BAO Hong-yan, YANG Tao, . Parameter sensitivity of horizontal bearing capacity of large diameter and super-long bored pile [J]. , 2018, 39(5): 1825-1833.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] YAO Yang-ping,FENG Xing,HUANG Xiang,LI Chun-liang. Application of UH model to finite element analysis[J]. , 2010, 31(1): 237 -245 .
[3] WU Ke, LUAN Mao-tian, YANG Qing, FAN Qing-lai, WANG Zhi-yun. Effect of strength heterogeneity of soft clay on failure envelopes of bucket foundation subjected to combined loading[J]. , 2009, 30(3): 779 -784 .
[4] ZHANG Yu-min, SHENG Qian, ZHANG Yong-hui, ZHU Ze-qi. Artificial simulation of nonstationary artificial seismic motion for large-scale underground cavern group located in alpine gorge area[J]. , 2009, 30(S1): 41 -46 .
[5] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[6] LONG Wan-xue, CHEN Kai-sheng, XIAO Tao, PENG Xiao-ping. Research of general triaxial test for unsaturated red clay[J]. , 2009, 30(S2): 28 -33 .
[7] CHEN Bao-guo , SUN Jin-shan , ZHANG Lei. Study of stressing state and ground treatment of reinforced concrete arch culvert[J]. , 2011, 32(5): 1500 -1506 .
[8] YUAN Jing-qiang , CHEN Wei-zhong , TAN Xian-jun , WANG Hui. Mesomechanical simulation of grouting in weak strata[J]. , 2011, 32(S2): 653 -659 .
[9] ZHOU Jian-wu ,LOU Xiao-ming. Analysis of soil heave due to pile-sinking with pre-drilling in soft clay[J]. , 2011, 32(9): 2839 -2844 .
[10] YANG Guang-qing, Lü Peng, PANG Wei, ZHAO Yu. Research on geogrid reinforced soil retaining wall with wrapped face by in-situ tests[J]. , 2008, 29(2): 517 -522 .