›› 2013, Vol. 34 ›› Issue (12): 3359-3364.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of modified Duncan-Chang model under true triaxial stresses

XU Ping1,2, SHAO Sheng-jun1,2, ZHANG Zhe1, LUO Ai-zhong1   

  1. 1. Institute of Geotechnical Engineering, School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China; 2. Shaanxi Key Laboratory of Loess Mechanics and Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received:2012-12-06 Online:2013-12-10 Published:2013-12-19

Abstract: Duncan-Chang nonlinear model has been widely used in numerical analysis of stress-strain in engineering. There exists insufficiency when Duncan-Chang model applied to complex stress conditions; this model is based on the axisymmetric stress conditions. We compared the model predictions with the experimental results of intact clay by true triaxial tests. The results demonstrate the applicability of Duncan-Chang model under complex stress condition. According to the analysis of the relationship between intermediate principal stress and the maximum principal strain under true triaxial stress conditions, and the maximum principal strain includes not only the maximum principal strain but also the strain, is caused by differences between the intermediate principal stress and the maximum principal stress. Based on Duncan-Chang E-B model, we proposed a method for determining Duncan-Chang E-B model parameter under different intermediate principal stress ratios and also established the modified Duncan-Chang model E-B model under complex stresses. The modified Duncan-Chang E-B model is reliable by comparison of the true triaxial test results of Xi'an intact clay; it is shown a way to use Duncan-Chang E-B model in complex stresses path.

Key words: true triaxial test, stress path, modified Duncan-Chang model, method of model parameter determination

CLC Number: 

  • TU 431
[1] KONG Liang, LIU Wen-zhuo, YUAN Qing-meng, DONG Tong, . Triaxial tests on gassy sandy soil under constant shear stress paths [J]. Rock and Soil Mechanics, 2019, 40(9): 3319-3326.
[2] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
[3] GONG Feng-qiang, WU Wu-xing, LI Tian-bin, SI Xue-feng, . Simulation experimental study of spalling failure of surrounding rock of rectangular tunnel of deep hard rock [J]. Rock and Soil Mechanics, 2019, 40(6): 2085-2098.
[4] LIU Jia-shun, WANG Lai-gui, ZHANG Xiang-dong, LI Xue-bin, ZHANG Jian-jun, REN Kun, . Cyclic triaxial test on saturated silty clay under partial drainage condition with variable confining pressure [J]. Rock and Soil Mechanics, 2019, 40(4): 1413-1419.
[5] LUO Dan-ni, SU Guo-shao, HE Bao-yu, . True triaxial test on rockburst of granites with different water saturations [J]. Rock and Soil Mechanics, 2019, 40(4): 1331-1340.
[6] LI Xin-ming, KONG Ling-wei, GUO Ai-guo, . Experimental study of the influence of unloading rate on the shear mechanical properties of undisturbed expansive clay [J]. Rock and Soil Mechanics, 2019, 40(10): 3758-3766.
[7] GUO Ying, LIU Xiao-dong. Influence of sample-preparing methods on CD test results of saturated silty sand in different stress paths [J]. Rock and Soil Mechanics, 2019, 40(10): 3783-3788.
[8] ZHANG Kun-yong, LI Wei, Charkley Nai Frederick, CHEN Shu,. True triaxial test on clay mixed with gravel with stress increment loading from minor principal stress direction [J]. , 2018, 39(9): 3270-3276.
[9] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[10] ZHOU Hui, JIANG Yue, LU Jing-jing, HU Da-wei, ZHANG Chuan-qing, CHEN Jun, LI Zhen, . Study of hollow cylinder torsional apparatus for rock [J]. , 2018, 39(5): 1917-1922.
[11] ZHOU Hui, JIANG Yue, LU Jing-jing, HU Da-wei,ZHANG Chuan-qing, CHEN Jun, LI Zhen, . Development of hollow cylinder torsional apparatus for rock [J]. , 2018, 39(4): 1535-1542.
[12] XUE Long, WANG Rui, ZHANG Jian-min, . DEM numerical test method for granular matter under complex 3D loading [J]. Rock and Soil Mechanics, 2018, 39(12): 4681-4690.
[13] KONG Xian-jing, ZHU Fa-yong, LIU Jing-mao, ZOU De-gao, NING Fan-wei, . Stress dilatancy of rockfill material under different loading directions [J]. , 2018, 39(11): 3915-3920.
[14] JIANG Jing-shan, CHENG Zhan-lin, ZUO Yong-zhen, DING Hong-shun,. Experimental investigation on strength characteristic of coarse-grained materials in three-dimensional stress state [J]. , 2018, 39(10): 3581-3588.
[15] JIANG Ting-ting, ZHANG Jian-hua, HUANG Gang, . Experimental study of fracture geometry during hydraulic fracturing in coal [J]. , 2018, 39(10): 3677-3684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, LI Shu-cai, WANG Ming-bin. Study of stability of anchoring jointed rockmass under seepage pressure[J]. , 2009, 30(9): 2843 -2849 .
[2] LIU En-long. Breakage mechanics for geomaterials: Breakage mechanism of structural blocks and binary-medium model[J]. , 2010, 31(S1): 13 -22 .
[3] JIE Yu-xin, YANG Guang-hua. Modification of elastoplastic models based on generalized potential theory[J]. , 2010, 31(S2): 38 -42 .
[4] YANG Jian-min, ZHENG Gang. Classification of seepage failures and opinion to formula for check bursting instability in dewatering[J]. , 2009, 30(1): 261 -264 .
[5] ZHOU Hua,WANG Guo-jin1,,FU Shao-jun,ZOU Li-chun,CHEN Sheng-hong. Finite element analysis of foundation unloading and relaxation effects of Xiaowan Arch Dam[J]. , 2009, 30(4): 1175 -1180 .
[6] YE Fei, ZHU He-hua, HE Chuan. Back-filled grouts diffusion model and its pressure to segments of shield tunnel[J]. , 2009, 30(5): 1307 -1312 .
[7] CHEN Lin, ZHANG Yong-xing, RAN Ke-xin. A method for calculating active earth pressure considering shear stress[J]. , 2009, 30(S2): 219 -223 .
[8] LUO Qiang , WANG Zhong-tao , LUAN Mao-tian , YANG Yun-ming , CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. , 2011, 32(S1): 732 -0737 .
[9] WANG Yun-Gang ,ZHANG Guang ,HU Qi. Study of force characteristics of battered pile foundation[J]. , 2011, 32(7): 2184 -2190 .
[10] GONG Wei-ming, HUANG Ting, DAI Guo-liang. Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. , 2011, 32(S2): 115 -121 .