›› 2014, Vol. 299 ›› Issue (2): 351-358.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of 3D soil arching in piled reinforced embankments

CAO Wei-ping, HU Wei-wei   

  1. School of Civil Engineering , Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Received:2013-07-20 Online:2014-02-11 Published:2014-02-18

Abstract: Soil arching has a notable influence on the behavior of piled reinforced embankment for its mechanically complex nature. A series of 3D model tests are conducted to explore the influence of the pile-soil relative displacement, embankment height, pile-cap spacing and horizontal reinforcement tension strength on the stress concentration ratio as well as the embankment settlement. The test results show that: soil arching is closely related to the pile-soil relative displacement and there exists a critical pile-soil relative displacement of approximate 6 to 8 mm which makes the stress concentration ratio reaching its maximum value. The bigger the ratio of embankment height is to the pile-cap clear spacing, the bigger the stress concentration ratio and the smaller the differential settlement on the surface of the embankment are; a bigger ratio of the cap width to the pile-cap clear spacing will result in a bigger stress concentration ratio and a smaller differential settlement. The installation of horizontal reinforcement within the embankment will effectively increase the stress concentration ratio and decrease the surface settlement; a low embankment as well as high tension strength of the reinforcement will enhance the function of the horizontal reinforcement. The equal settlement plane height is about 3.5 times the pile-cap clear spacing for 3D soil arch in piled reinforced embankments.

Key words: piled reinforced embankment, 3D soil arching, model test, soil stress concentration ratio, equal settlement plane

CLC Number: 

  • U 416.1+2
[1] WANG Guo-hui, CHEN Wen-hua, NIE Qing-ke, CHEN Jun-hong, FAN Hui-hong, ZHANG Chuan, . Impacts of pit excavation on foundation piles in deep silty soil by centrifugal model tests [J]. Rock and Soil Mechanics, 2020, 41(2): 399-407.
[2] YU Yi-fan, WANG Ping, WANG Hui-juan, XU Shu-ya, GUO Hai-tao, . Physical model test of seismic dynamic response to accumulative landslide [J]. Rock and Soil Mechanics, 2019, 40(S1): 172-180.
[3] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[4] CHEN Yu-long, UCHIMURA Taro, . Early warning of rainfall-induced landslides based on elastic wave velocity [J]. Rock and Soil Mechanics, 2019, 40(9): 3373-3386.
[5] WANG Qin-ke, MA Jian-lin, CHEN Wen-long, YANG Yan-xin, HU Zhong-bo, . Centrifugal model tests and calculation method of uplift bearing capacity of rock-socketed pedestal pile overburden soil [J]. Rock and Soil Mechanics, 2019, 40(9): 3405-3415.
[6] LU Liang, SHI Tong-hui, YANG Dong, . Control effect of uneven settlement of subgrade by composited method of replacement load shedding and reinforced embankment [J]. Rock and Soil Mechanics, 2019, 40(9): 3474-3482.
[7] CAI Yu, XU Lin-rong, ZHOU De-quan, DENG Chao, FENG Chen-xi, . Model test research on method of self-balance and traditional static load [J]. Rock and Soil Mechanics, 2019, 40(8): 3011-3018.
[8] SUN Fei, ZHANG Zhi-qiang, YI Zhi-wei. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure [J]. Rock and Soil Mechanics, 2019, 40(8): 3037-3044.
[9] ZHOU Dong, LIU Hang-long, ZHANG Wen-gang, DING Xuan-ming, YANG Chang-you, . Transparent soil model test on the displacement field of soil around single passive pile [J]. Rock and Soil Mechanics, 2019, 40(7): 2686-2694.
[10] ZHAO Xiao-yan, FAN Yu-fei, LIU Liang, JIANG Chu-sheng, . Model test on potential failure surface characteristics of railway stepped reinforced soil retaining wall [J]. Rock and Soil Mechanics, 2019, 40(6): 2108-2118.
[11] CHU Zhao-fei, LIU Bao-guo, REN Da-rui, SONG Yu, MA Qiang, . Development of rheology similar material of soft rock and its application in model test [J]. Rock and Soil Mechanics, 2019, 40(6): 2172-2182.
[12] WU Guan-ye, ZHENG Hui-feng, XU Jian-rong. Model test study of stability and failure mechanism of three-dimensional complicated block system slope with deeply reinforcement [J]. Rock and Soil Mechanics, 2019, 40(6): 2369-2378.
[13] LI Shu-zhao, WANG Zhong-chang, JIA Xu, HE Lin-lin, . Simplified calculation method for cyclic bearing capacity of suction anchors with taut mooring in soft clay [J]. Rock and Soil Mechanics, 2019, 40(5): 1704-1712.
[14] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[15] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHU Xi-hua, XU Yuan-jie. Studies on transformation from M-C criterion to Drucker-Prager criterions based on distortion energy density[J]. , 2009, 30(10): 2985 -2990 .
[2] LIU Dou-dou, CHEN Wei-zhong, YANG Jian-ping, TAN Xian-jun, ZHOU X. Experimental research on strength characteristic of brittle rock unloading confining pressure[J]. , 2009, 30(9): 2588 -2594 .
[3] WANG Gui-yao,LI Bin,LUO Jun,FU Hong-yuan. Study of soil-water charactiristics and matric suction measurement device for unsaturated silty soil[J]. , 2010, 31(11): 3678 -3682 .
[4] LU Ying-fa, CHENG Zhu-lei, XIE Wen-liang, Lü Zhi-zhong. Application of geotechnics to sanitation landfill of refuse[J]. , 2009, 30(1): 91 -98 .
[5] WANG Zhi-ping,HU Min-yun,XIA Ling-tao. Research on compressibility of municipal solid waste by laboratory tests[J]. , 2009, 30(6): 1681 -1686 .
[6] JIA Qiang, YING Hui-qing, ZHANG Xin. Construction of basement in existing buildings by static bolt-pile[J]. , 2009, 30(7): 2053 -2057 .
[7] LU Jun-fu,WANG Ming-nian,JIA Yuan-yuan,YU Yu, TAN Zhong-sheng. Research on construction time of secondary lining of large section loess tunnel for high-speed railway[J]. , 2011, 32(3): 843 -848 .
[8] WANG Cheng-hua, AN Jian-guo. Numerical analyses of vertical bearing capacity of foundations with enlarged pile group[J]. , 2011, 32(S2): 580 -585 .
[9] FANG Tao , LIU Xin-rong , GENG Da-xin , LUO Zhao , JI Xiao-tuan , ZHENG Ming-xin . Model testing study of vertical bearing behaviors for large diameter pile with variable cross-section (I)[J]. , 2012, 33(10): 2947 -2952 .
[10] HU Wan-yu ,CHEN Xiang-hao ,LIN Jiang ,KUANG Lei-qiang . In-situ drilling tests of seepage in gravel soil core wall during the first impoundment in Pubugou hydropower station[J]. , 2013, 34(5): 1259 -1263 .