›› 2014, Vol. 299 ›› Issue (2): 359-364.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Dynamic properties variation of tire shred-soil mixtures

LI Li-hua 1, 2, 3, XIAO Heng-lin1, TANG Hui-ming3, HU Qi-zhi1, SUN Miao-jun3, SUN Long1   

  1. (1. School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan 430068, China; 2. Key Laboratory of Safety for Geotechnical and Structural Engineering of Hubei Province, Wuhan University, Wuhan 430072, China; 3. Engineering Faculty, China University of Geosciences, Wuhan 430074, China
  • Received:2012-11-21 Online:2014-02-11 Published:2014-02-18

Abstract: Sand soil mixed with waste tire shreds can be used as filling of subgrade, retaining wall or shock isolation system of base etc., which has many advantages, such as small earth pressure, good absorption of vibration, excellent durability and low cost. There are comparison between the mixture and the sand soil through digital dynamic triaxial tests, which mainly include the influence of the tire shred content and the confining pressure on the dynamic strength, dynamic elastic modulus and equivalent damping ratio. The results show that when the confining pressure and the dynamic shear stress ratio are equal, the dynamic strength of the mixture is slightly lower than that of the sand soil which is reduced by 20 kPa, 8%. The dynamic elastic modulus of the mixture obviously decreases with 22 MPa, 60% of the maximum reduction. The equivalent damping ratio of the mixture firstly increases, then decreases with the increasing of the tire shred content; the critical tire shred content is about 30%-40%. The mixture’s maximum increment of equivalent damping ratio is about 91%. Test results confirm that the shearing rigidity of the mixture can effectively reduce, which can exploit the advantage of the absorption of vibration to the full.

Key words: mixture soil, tire shreds, dynamic strength, dynamic elastic modulus, equivalent damping ratio

CLC Number: 

  • TU 411.8
[1] ZHUANG Xin-shan, WANG Jun-xiang, WANG Kang, LI Kai, HU Zhi. Experimental study on dynamic characteristics of expansive soil modified by weathered sand [J]. Rock and Soil Mechanics, 2018, 39(S2): 149-156.
[2] KONG Gang-qiang, LI Hui, WANG Zhong-tao , WEN Lei,. Comparison of dynamic properties between transparent sand and natural sand [J]. , 2018, 39(6): 1935-1940.
[3] WANG Min-min, LU Qun, GUO Shao-long, GAO Meng, SHEN Zhong-tao,. Dynamic behavior of soil with fiber and cement under cyclic loading [J]. , 2018, 39(5): 1753-1760.
[4] MA Lin-jian, YANG Fa, WANG Ming-yang, LI Zeng, . Generalized Hoek-Brown dynamic strength criterion incorporating strain rate effect [J]. , 2017, 38(S2): 27-32.
[5] LIU Jie, LEI Lan, WANG Rui-hong, WANG Fei, WANG Lian, XIAO Lei. Dynamic characteristics of sandstone under low-stress level conditions in freezing-thawing cycles [J]. , 2017, 38(9): 2539-2550.
[6] HUANG Juan, DING Zu-de , YUAN Tie-ying, ZHAO Dan, PENG Li-min,. Experimental study of dynamic deformation properties of peaty soil under cyclic loading [J]. , 2017, 38(9): 2551-2558.
[7] CHEN Le-qiu, ZHANG Jia-sheng, CHEN Jun-hua, CHEN Ji-guang,. Testing of static and dynamic strength properties of cement-improved argillaceous-slate coarse-grained soil [J]. , 2017, 38(7): 1903-1910.
[8] DENG Hua-feng, HU Yu, LI Jian-lin, WANG Zhe, ZHANG Xiao-jing, ZHANG Heng-bin. Effects of frequency and amplitude of cyclic loading on the dynamic characteristics of sandstone [J]. , 2017, 38(12): 3402-3409.
[9] ZANG Meng, KONG Ling-wei, GUO Ai-guo. Effects of static deviatoric stress on dynamic characteristics of Zhanjiang structured clay [J]. , 2017, 38(1): 33-40.
[10] YIN Song, KONG Ling-wei, YANG Ai-wu, MU Kun,. Indoor experimental study of road performance of granite residual soil for subgrade filling materials [J]. , 2016, 37(S2): 287-293.
[11] LENG Wu-ming , ZHOU Wen-quan , NIE Ru-song , ZHAO Chun-yan , LIU Wen-jie , YANG Qi,. Analysis of dynamic characteristics and accumulative deformation of coarse-grained soil filling of heavy-haul railway [J]. , 2016, 37(3): 728-736.
[12] LIU Wei-zheng ,QU Shuai ,ZHANG Ding-wen ,XU Lin-rong,. Experimental study of behavior of deformation and strength of artificial structural soft clay under cyclic loading [J]. , 2015, 36(6): 1691-1697.
[13] LENG Wu-ming ,LIU Wen-jie ,ZHAO Chun-yan ,ZHOU Wen-quan ,YANG Qi , . Experimental research on dynamic failure rules of compacted coarse-grained soil filling in heavy haul railway subgrade [J]. , 2015, 36(3): 640-646.
[14] HE Ming-ming, LI Ning, CHEN Yun-sheng, ZHU Cai-hui. An experimental study of dynamic behaviors of rock under stepwise cyclic loading [J]. , 2015, 36(10): 2907-2913.
[15] JIAN Wen-bin ,ZHANG Deng ,XU Xu-tang , . Analysis of consolidation grouting effect of fractured rock mass based on wave velocity test [J]. , 2014, 35(7): 1943-1949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[10] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .