›› 2007, Vol. 28 ›› Issue (S1): 311-314.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Analysis of scour deformation of riverbank subjected to seepage force

YU Yu-zhen, XIE Li-quan, SUN Xun   

  1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2007-05-31 Online:2007-10-25 Published:2014-03-28

Abstract: Many factors, such as water-level, velocity and sediment charge of river flow, affect the erosion of riverbanks. Moreover, the strong seepage force may result in a higher riverbank scour rate. The formula for riverbank scour rate under seepage force is developed based on an of analysis of forces acting on sediment particles and the experimental data in a rectangle flume by Wang. An example is given to show the application of the formula to riverbank scour rate. It is expected that the formula for bank scour rate can be used to analyze the changing process of riverbank landform and to forecast bank collapse.

Key words: riverbank, underwater terrain, forecast, seepage, flow

CLC Number: 

  • TV 697.3
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] LIU Zhong-yu, CUI Peng-lu, ZHENG Zhan-lei, XIA Yang-yang, ZHANG Jia-chao. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant’s model [J]. Rock and Soil Mechanics, 2019, 40(6): 2029-2038.
[2] ZHOU Xiao-wen, CHENG Li, ZHOU Mi, WANG Qi, . Behavior of ball penetration in clay in centrifuge testing [J]. Rock and Soil Mechanics, 2019, 40(5): 1713-1720.
[3] LIU Jian, CHEN Liang, WANG Chun-ping, MA Li-ke, WANG Ju. A new method of calculating gas permeability of rock under unsteady flow condition and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1721-1730.
[4] LIU Meng-shi, LUO Qiang, JIANG Liang-wei, LU Qing-yuan, LIANG Duo-wei, . Boundary pore characteristics and optimal treatment thickness in seepage test of coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(5): 1787-1796.
[5] ZHANG Wen-jie, YANG Jin-kang. Dye tracer test on preferential flow pattern in landfilled waste [J]. Rock and Soil Mechanics, 2019, 40(5): 1847-1853.
[6] WU Shun-chuan, MA Jun, CHENG Ye, CHENG Zi-qiao, LI Jian-yu, . Review of the flattened Brazilian test and research on the three dimensional crack initiation point [J]. Rock and Soil Mechanics, 2019, 40(4): 1239-1247.
[7] WANG Tao, LIU Si-hong, ZHENG Shou-ren, LU Yang, . Experimental study of compression characteristics of rockfill materials with composite grout [J]. Rock and Soil Mechanics, 2019, 40(4): 1420-1426.
[8] XU Qiang, XIAO Ming, CHEN Jun-tao, NI Shao-hu, . Solution to seepage monitoring data deficiency and judgement of seepage stability [J]. Rock and Soil Mechanics, 2019, 40(4): 1526-1534.
[9] WEI Xing, ZHANG Zhao, WANG Gang, ZHANG Jian-min, . DEM study of mechanism of large post-liquefaction deformation of saturated sand [J]. Rock and Soil Mechanics, 2019, 40(4): 1596-1602.
[10] XIE Qiang, TIAN Da-lang, LIU Jin-hui, ZHANG Jian-hua, ZHANG Zhi-bin, . Simulation of seepage flow on soil slope and special stress-correction technique [J]. Rock and Soil Mechanics, 2019, 40(3): 879-892.
[11] ZHENG Li-ming, ZHANG Yang-yang, LI Zi-feng, MA Ping-hua, YANG Xin-jun, . Analysis of seepage changes during poroelastic consolidation process with porosity and pressure variation under low-frequency vibration [J]. Rock and Soil Mechanics, 2019, 40(3): 1158-1168.
[12] ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, JIN Yin-fu, . Three-dimensional discrete element simulation of influence of particle shape on granular column collapse [J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203.
[13] ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, . Physical approach to predict unsaturated permeability function based on soil particle size distribution [J]. Rock and Soil Mechanics, 2019, 40(2): 549-560.
[14] YIN Qian, JING Hong-wen, LIU Ri-cheng, SU Hai-jian, YU Li-yuan, WANG Ying-chao. Nonlinear fluid flow behaviors in fracture networks subjected to various lateral pressure ratios [J]. Rock and Soil Mechanics, 2019, 40(2): 592-600.
[15] WANG You-biao, YAO Chang-rong, LIU Sai-zhi, LI Ya-dong, ZHANG Xun. Experimental study of debris flow impact forces on bridge piers [J]. Rock and Soil Mechanics, 2019, 40(2): 616-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QI Ji-lin,MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. , 2010, 31(1): 133 -143 .
[2] SHANG Shou-ping, SUI Xiao-xi, ZHOU Zhi-jin, LIU Fang-cheng, XIONG Wei. Study of dynamic shear modulus of granulated rubber-sand mixture[J]. , 2010, 31(2): 377 -381 .
[3] ZHOU Yong-xi, ZHANG De-xuan, LUO Chun-yong, CHEN Jun. Experimental research on steady strength of saturated loess[J]. , 2010, 31(5): 1486 -1490 .
[4] LI Jian-hua, XU Bin, XU Man-qing, LIU You-ping. Vibration isolation using pile rows in a layered poroelastic half-space against vibration due to harmonic loads[J]. , 2010, 31(S2): 12 -18 .
[5] ZHANG Ting,LIU Han-long,HU Yu-xia,STEWART Doug. Geotechnical drum centrifuge technique and its engineering application[J]. , 2009, 30(4): 1191 -1196 .
[6] SU Guo-shao, ZHANG Ke-shi, Lü Hai-bo. A cooperative optimization method based on particle swarm optimization and Gaussian process for displacement back analysis[J]. , 2011, 32(2): 510 -515 .
[7] LENG Yi,LUAN Mao-tian,XU Cheng-shun,MA Tai-lei. Experimental research on behaviors of saturated sand subject to drained shear strength under complex stress conditions[J]. , 2009, 30(6): 1620 -1626 .
[8] HU Zai-qiang, LI Hong-ru, SU Yong-jiang. 3-D static stress and displacement analysis of Gangqu river concrete faced rockfill dam[J]. , 2009, 30(S2): 312 -0317 .
[9] YING Hong-wei, NIE Wen-feng, GUO Lei, YANG Yong-wen. A modified beam-spring model method and its application considering unloading effect during excavation[J]. , 2011, 32(S1): 129 -133 .
[10] JING Feng , SHENG Qian , ZHANG Yong-hui , LIU Yuan-kun. Study advance on in-site geostress measurement and analysis of initial geostress field in China[J]. , 2011, 32(S2): 51 -58 .