Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (2): 616-623.doi: 10.16285/j.rsm.2017.1582

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of debris flow impact forces on bridge piers

WANG You-biao, YAO Chang-rong, LIU Sai-zhi, LI Ya-dong, ZHANG Xun   

  1. School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
  • Received:2017-07-27 Online:2019-02-11 Published:2019-02-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51478400) and the Science and Technology Plan Projects of Sichuan Province (2016HH0076).

Abstract: Debris flow destroying piers is a common destructive form of bridge under the impact of debris flow. To investigate the magnitude of debris flow impact forces on bridge piers, we adjusted the contents of clay, sand, gravel, and water to generate debris flows with different rheological properties and densities. Two types of pier scale models with circular and square cross section were impacted in debris flow trough by using the above debris flows to comprehensively investigate the relationship between rheological characteristics, flow velocity, pier shape and impact force. The results show that the obtained debris flow materials have distinct rheological properties which can be easily measured through a rotational viscometer and represented by Newtonian fluid or Bingham fluid. The velocity of debris flow can be calculated by the Manning equation, and the roughness coefficient and the viscosity of debris flow in the equation satisfy a power function relationship. In the same cases, the impact forces on a round pier and on a square pier are significantly different. Generally, the drag coefficient of impact force on a round pier is much larger than that on a square pier. Because using non-Newtonian fluid Reynolds number (Re) can comprehensively represent the debris flow’s rheological properties and velocities, the drag coefficient of the round pier be expressed as a function of Re. However, there exists this function for the square pier. For the convenient application in engineering, the drag coefficient of a round pier can be selected as 2.3 and 0.9 for viscous debris flow and sub-viscous debris flow, respectively. For a round pier, the drag coefficients are 2.6 and 1.9 for viscous debris flow and sub-viscous debris flow, respectively.

Key words: debris flow, bridge pier, impact force, scale model test

CLC Number: 

  • P 642.23,U 445.7+5
[1] CHEN Tai-jiang, XIANG Xin, ZHANG Guang-cheng, . Characteristic parameters theoretical analysis of rockfall impact on ground based on linear viscoelastic contact theory [J]. Rock and Soil Mechanics, 2022, 43(9): 2410-2420.
[2] XU Jiang, CHENG Liang, WEI Ren-zhong, PENG Shou-jian, ZHOU Bin, YANG Hai-lin, . Propagation characteristics of coal-gas two-phase flow in T-shaped roadway [J]. Rock and Soil Mechanics, 2022, 43(6): 1423-1433.
[3] WANG Dong-po, ZHAO Jun, ZHANG Xiao-mei, YANG Xin, . Experimental study of regulation performance of open flexible debris flow barriers [J]. Rock and Soil Mechanics, 2022, 43(5): 1237-1248.
[4] CHEN Tai-jiang, ZHANG Guang-cheng, XIANG Xin, . Investiagtions on mechanical characteristics of rockfall impact on concrete shed cave [J]. Rock and Soil Mechanics, 2022, 43(1): 277-285.
[5] LIANG Heng, LI Ji-lin, LIU Fa-ming, ZHANG Lun, FU Gang, LI Ming-qing, HE Si-ming, . Simulation of debris flow impacting bridge pier tests based on smooth particle hydromechanics method [J]. Rock and Soil Mechanics, 2021, 42(5): 1473-1484.
[6] LI Qing-song, WEN Lei, KONG Gang-qiang, GAO Hong-mei, SHEN Zhi-fu, . Theoretical computation of the uplift bearing capacity of helical piles based on cavity expansion method [J]. Rock and Soil Mechanics, 2021, 42(4): 1088-1094.
[7] YE Yang, ZENG Ya wu, DU Xin, SUN Han qing, CHEN Xi, . Three-dimensional discrete element simulation of spherical gravel collision damag [J]. Rock and Soil Mechanics, 2020, 41(S1): 368-378.
[8] LUO Yi, ZHANG Jia-ming, ZHOU Zhi, CHIKHOTKIN Victor, MI Min, SHEN Jun, . Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions [J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600.
[9] CHENG Liang, XU Jiang, ZHOU Bin, PENG Shou-jian, YAN Fa-zhi, YANG Xiao-bo, YANG Wen-jian . The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow [J]. Rock and Soil Mechanics, 2020, 41(8): 2619-2626.
[10] LIU Gong-xun, LI Wei, HONG Guo-jun, ZHANG Kun-yong, CHEN Xiu-han, SHI Shao-gang, RUTTEN Tom. Sandstone failure characteristics in large-scale cutting model tests [J]. Rock and Soil Mechanics, 2020, 41(4): 1211-1218.
[11] WANG Dong-po, ZHANG Xiao-mei. Study on dynamic response of debris flow impact arc-shaped dam [J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861.
[12] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[13] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[14] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[15] YANG Zong-ji, CAI Huan, LEI Xiao-qin, WANG Li-yong, DING Peng-peng, QIAO Jian-ping, . Experiment on hydro-mechanical behavior of unsaturated gravelly soil slope [J]. Rock and Soil Mechanics, 2019, 40(5): 1869-1880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .