Rock and Soil Mechanics ›› 2021, Vol. 42 ›› Issue (5): 1473-1484.doi: 10.16285/j.rsm.2020.1107

• Numerical Analysis • Previous Articles    

Simulation of debris flow impacting bridge pier tests based on smooth particle hydromechanics method

LIANG Heng1, LI Ji-lin2, LIU Fa-ming3, ZHANG Lun4, FU Gang3, LI Ming-qing3, HE Si-ming1   

  1. 1. Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 2. China State Railway Group Co. Ltd., Beijing 100844; 3. China Railway Eryuan Engineering Group Co. Ltd, Chengdu, Sichuan 610031, China; 4. Chengdu Lanzhou Railway CO., Ltd., Chengdu, Sichuan 610031, China
  • Received:2020-07-29 Revised:2020-12-28 Online:2021-05-11 Published:2021-05-08
  • Supported by:
    This work was supported by the Major Project of Science and Technology Research and Development Program of Ministry of Railways (Z2012-061), the Major Projects of the National Natural Science Foundation of China (41790433), the Special Experimental Project of China Railway (CLRQT-2015-012), the Research Project of China Railway (2012-major-3), the Key Deployment Projects of CAS (KFZD-SW-424) and the Key Research and Development Program of Sichuan Province (19ZDYF2709).

Abstract: In this paper, a three-dimensional numerical simulation model is established based on smooth particle hydrodynamics (SPH) method. In this model, the dynamic behavior of debris flow is described by using the Bingham fluid model, and the bridge pier is regarded as the terrain condition. The repulsive force at the boundary is introduced to improve the boundary condition. Based on flume experiments, the accumulation processes of debris flow impacting the bridge pier with various viscosities and characteristics of the impact force-time curves are analyzed. The physical models are established, and the simulation of three-dimensional dynamic evolution processes of debris flow impacting the bridge pier with various rheological parameters and weights are realized. Moreover, the simulation results of the accumulation processes of debris flow with various rheological parameters and the impact force-time curves are analyzed. It is found that there are differences between the simulation results and the experimental results of the dynamic evolution processes of low-viscous debris flow impacting the bridge pier. From the view of fluid mechanics, the primary reason lies in the ignorance of the energy dissipation owing to lack of a description of Reynolds stresses caused by turbulence. Besides, the bridge pier safeguard procedures under the impact of debris flow with various viscosities are discussed. This work provides a theoretical support for further optimization of the three-dimensional numerical calculation model of debris flow impacting the bridge pier.

Key words: SPH method, debris flow, bridge pier, impact, fluid-solid interaction

CLC Number: 

  • P 642.23
[1] CAI Can, ZHANG Pei, SUN Ming-guang, YANG Ying-xin, XIE Song, PU Zhi-cheng, YANG Xian-peng, GAO Chao, TAN Zheng-bo. Mechanism of rock breaking under combining of separated impact and cutting in oil and gas drilling [J]. Rock and Soil Mechanics, 2021, 42(9): 2535-2544.
[2] YANG Gao-sheng, BAI Bing, YAO Xiao-liang, CHEN Pei-pei, . Smoothed particle hydrodynamics for simulation of water vapor migration and phase change in unsaturated frozen soil [J]. Rock and Soil Mechanics, 2021, 42(1): 291-300.
[3] YE Yang, ZENG Ya wu, DU Xin, SUN Han qing, CHEN Xi, . Three-dimensional discrete element simulation of spherical gravel collision damag [J]. Rock and Soil Mechanics, 2020, 41(S1): 368-378.
[4] CHENG Liang, XU Jiang, ZHOU Bin, PENG Shou-jian, YAN Fa-zhi, YANG Xiao-bo, YANG Wen-jian . The influence of different gas pressures on the propagation law of coal and gas outburst two-phase flow [J]. Rock and Soil Mechanics, 2020, 41(8): 2619-2626.
[5] LIU Xin-yu, ZHANG Xian-wei, YUE Hao-zhen, KONG Ling-wei, XU Chao, . SHPB tests on dynamic impact behavior of granite residual soil [J]. Rock and Soil Mechanics, 2020, 41(6): 2001-2008.
[6] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[7] ZHOU En-quan, ZONG Zhi-xin, WANG Qiong, LU Jian-fei, ZUO Xi. Dynamic characteristics of pipe buried in rubber-silt lightweight mixtures [J]. Rock and Soil Mechanics, 2020, 41(4): 1388-1395.
[8] WANG Qing-yuan, LIU Jie, WANG Pei-tao, LIU Fei, . 冲击扰动诱发蠕变岩石加速失稳破坏试验 [J]. Rock and Soil Mechanics, 2020, 41(3): 781-788.
[9] WANG Dong-po, ZHANG Xiao-mei. Study on dynamic response of debris flow impact arc-shaped dam [J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861.
[10] WEN Lei, LIANG Xu-li, FENG Wen-jie, WANG Wei, WANG Liang, CHANG Jiang-fang, YUAN Wei, . An investigation of the mechanical properties of sandstone under coupled static and dynamic loading [J]. Rock and Soil Mechanics, 2020, 41(11): 3540-3552.
[11] LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si. Acoustic emission b-values of limestone under uniaxial compression and Brazilian splitting loads [J]. Rock and Soil Mechanics, 2019, 40(S1): 267-274.
[12] HAN Zheng, SU Bin, LI Yan-ge, WANG Wei, WANG Wei-dong, HUANG Jian-ling, CHEN Guang-qi, . Smoothed particle hydrodynamic numerical simulation of debris flow process based on Herschel-Bulkley-Papanastasiou constitutive model [J]. Rock and Soil Mechanics, 2019, 40(S1): 477-485.
[13] WANG Dong-po, CHEN Zheng, HE Si-ming, CHEN Ke-jian, LIU Fa-ming, LI Ming-qing, . Physical model experiments of dynamic interaction between debris flow and bridge pier model [J]. Rock and Soil Mechanics, 2019, 40(9): 3363-3372.
[14] WU Feng-yuan, FAN Yun-yun, CHEN Jian-ping, LI Jun, . Simulation analysis of dynamic process of debris flow based on different entrainment models [J]. Rock and Soil Mechanics, 2019, 40(8): 3236-3246.
[15] WANG You-biao, YAO Chang-rong, LIU Sai-zhi, LI Ya-dong, ZHANG Xun. Experimental study of debris flow impact forces on bridge piers [J]. Rock and Soil Mechanics, 2019, 40(2): 616-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jin-ming, QIANG Pei, ZHANG Peng-fei. Texture analysis of photographs of silty clay[J]. , 2009, 30(10): 2903 -2907 .
[2] LIANG Gui-lan, XU Wei-ya, TAN Xiao-long. Application of extension theory based on entropy weight to rock quality evaluation[J]. , 2010, 31(2): 535 -540 .
[3] MA Wen-tao. Forecasting slope displacements based on grey least square support vector machines[J]. , 2010, 31(5): 1670 -1674 .
[4] YU Lin-lin,XU Xue-yan,QIU Ming-guo, LI Peng-fei,YAN Zi-li. Influnce of freeze-thaw on shear strength properties of saturated silty clay[J]. , 2010, 31(8): 2448 -2452 .
[5] WANG Wei, LIU Bi-deng, ZHOU Zheng-hua, WANG Yu-shi, ZHAO Ji-sheng. Equivalent linear method considering frequency dependent stiffness and damping[J]. , 2010, 31(12): 3928 -3933 .
[6] WANG Hai-bo,XU Ming,SONG Er-xiang. A small strain constitutive model based on hardening soil model[J]. , 2011, 32(1): 39 -43 .
[7] CAO Guang-xu, SONG Er-xiang, XU Ming. Simplified calculation methods of post-construction settlement of high-fill foundation in mountain airport[J]. , 2011, 32(S1): 1 -5 .
[8] LIU Hua-li , ZHU Da-yong , QIAN Qi-hu , LI Hong-wei. Analysis of three-dimensional end effects of slopes[J]. , 2011, 32(6): 1905 -1909 .
[9] LIU Nian-ping , WANG Hong-tu , YUAN Zhi-gang , LIU Jing-cheng. Fisher discriminant analysis model of sand liquefaction and its application[J]. , 2012, 33(2): 554 -557 .
[10] WANG Wei-dong , LI Yong-hui , WU Jiang-bin . Pile-soil interface shear model of super long bored pile and its FEM simulation[J]. , 2012, 33(12): 3818 -3824 .