›› 2007, Vol. 28 ›› Issue (S1): 613-615.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Slope's reliability analysis based on imbalance thrust force method

HUANG Chao, WANG Shui-lin   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2007-06-15 Online:2007-10-25 Published:2014-03-28

Abstract: The Rosenblueth Method is a simple and practical calculation method of reliability index as the probabi- lity distribution of all kinds of state variables does not need to be known, and only by using the averages and variances of state variables can one get the reliability index of soil slope. In this paper an explicit expression about landslide load-increased factor is deduced. Using the expression as the status function of reliability analysis and the advantage of Rosenblueth Method, a method of calculating the reliability of slope is put forward.

Key words: slope stability, Rosenblueth method, reliability index, failure probability, landslide load-increased factor

CLC Number: 

  • TU 443
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] YU Guo, XIE Mo-wen, ZHENG Zheng-qin, QIN Shi-he, DU Yan, . Research on slope stability calculation method based on GIS [J]. Rock and Soil Mechanics, 2019, 40(4): 1397-1404.
[2] LIU Su-jin, GUO Ming-wei, LI Chun-guang, . Determination of main sliding direction for three-dimensional slope [J]. Rock and Soil Mechanics, 2018, 39(S2): 37-44.
[3] DAI Zhong-hai, HU Zai-qiang, YIN Xiao-tao, WU Zhen-jun,. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load [J]. , 2018, 39(S1): 412-418.
[4] QIN Yu-qiao, TANG Hua, FENG Zhen-yang, YIN Xiao-tao, WANG Dong-ying, . Slope stability evaluation by clustering analysis [J]. , 2018, 39(8): 2977-2983.
[5] GUO Chong-yang, LI Dian-qing, CAO Zi-jun, GAO Guo-hui, TANG Xiao-song. Efficient reliability sensitivity analysis for slope stability in spatially variable soils [J]. , 2018, 39(6): 2203-2210.
[6] LI Wei, XU Qiang, WU Li-zhou, LI Si-qi, . Influence of seepage forms of confined water on translational landslide [J]. , 2018, 39(4): 1401-1410.
[7] WU Zhen-yu, CHEN Jian-kang. Method of reliability analysis of stability for soil slope and its application in high soil and rockfill dams [J]. , 2018, 39(2): 699-704.
[8] ZHENG Gang, YU Xiao-xuan, DU Juan, YIN Xin, ZHOU Hai-zuo, YANG Xin-yu, . Numerical analysis of ultimate bearing capacity of strip footings near slopes [J]. , 2018, 39(10): 3812-3820.
[9] ZHU Yan-peng, YANG Xiao-yu, MA Xiao-rui, YANG Xiao-hui, YE Shuai-hua, . Several questions of double reduction method for slope stability analysis [J]. , 2018, 39(1): 331-338.
[10] ZHU Yong, ZHOU Hui, FENG Xia-ting, ZHANG Chuan-qing, ZHANG Ming-qiang, YANG Fan-jie,. Directional simulation of failure probability of rock slope wedge [J]. , 2017, 38(S1): 151-157.
[11] CHEN Chun-shu, XIA Yuan-you. Seismic reliability analysis of slope reinforced with prestressed anchor cable based on global limit response surface [J]. , 2017, 38(S1): 255-262.
[12] NIE Zhi-bao, ZHENG Hong, ZHANG Tan. Determination of slope critical slip surfaces using strength reduction method and wavelet transform [J]. , 2017, 38(6): 1827-1831.
[13] QI Xiao-hui, LI Dian-qing, CAO Zi-jun, TANG Xiao-song, . Uncertainty analysis of slope stability considering geological uncertainty [J]. , 2017, 38(5): 1385-1396.
[14] XU Xiao-liang, LI Jian-lin, GONG Jia-wei, WAN Liang-peng, CHEN Jiang-hong,. Copula-based slope reliability analysis using g-line failure domain [J]. , 2017, 38(5): 1445-1462.
[15] ZHANG Kun, XU Qing, WANG Yi-fan, A Hu-bao. Application of self-adaptive differential evolution algorithm in searching for critical slip surface of slope [J]. , 2017, 38(5): 1503-1509.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Min-sheng,LIU Hong-jun,LI Xiao-dong,JIA Yong-gang,WANG Xiu-hai. Study of liquefaction of silty soil and mechanism of development of hard layer under wave actions at Yellow River Estuary[J]. , 2009, 30(11): 3347 -3351 .
[2] DU Wen-qi, WANG Gang. Statistical analysis of earthquake-induced sliding displacements of earth structures[J]. , 2011, 32(S1): 520 -0525 .
[3] ZENG Kai-hua1, JU Hai-yan1, ZHANG Chang-guang2. Elastoplastic unified solution for displacements around a deep circular tunnel and its comparative analysis[J]. , 2011, 32(5): 1315 -1319 .
[4] ZHANG Hong , ZHENG Ying-ren , YANG Zhen , WANG Qian-yuan , GE Su-ming. Exploration of design methods of support structure in loess tunnel[J]. , 2009, 30(S2): 473 -478 .
[5] WEI Hou-zhen, YAN Rong-tao, CHEN Pan, TIAN Hui-hui, WU Er-lin, WEI Chang-fu. Deformation and failure behavior of carbon dioxide hydrate-bearing sands with different hydrate contents under triaxial shear tests[J]. , 2011, 32(S2): 198 -203 .
[6] WU Yi. An equivalent far-field artificial dynamic-boundary condition for one-dimensional problem[J]. , 2011, 32(11): 3508 -3514 .
[7] YANG Guang-hua. Calculation of soil nail forces and displacement in soil nailing retaining wall[J]. , 2012, 33(1): 137 -146 .
[8] ZHONG Sheng ,WANG Chuan-ying ,WU Li-xin ,TANG Xin-jian ,WANG Qing-yuan. Borehole radar response characteristics of point unfavorable geo-bodies: forward simulation of its surrounding rock and filling condition[J]. , 2012, 33(4): 1191 -1195 .
[9] ZHOU Ai-zhao , LU Ting-hao . Strain softening model of soil-structure interface under constant stress increment ratio stress paths[J]. , 2012, 33(S1): 44 -48 .
[10] LIU Jie, LI Jian-lin, WAN Liang-peng, CAI Jian, XIAO Lei . Research on Dagangshan dam abutment slope anchorage optimization based on theory of unloading and seismic analysis[J]. , 2012, 33(S2): 275 -282 .