›› 2007, Vol. 28 ›› Issue (S1): 769-772.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on the earthquake parameters for geotechnical engineering

LIU Jian-da, GAO Jun-suo, DONG Wei-guo   

  1. Earthquake Engineering Institute of Jiangsu Province, Nanjing 210014, China
  • Received:2007-04-14 Online:2007-10-25 Published:2014-03-28

Abstract: Methods of determining ground motion parameters for geotechnical engineering are dispersed in different designing norms in China now. Though most of the norms have been revised since 2000, they are still somewhat rational. There are two norms related to seismic-resistant issued in 2001. They are Regionalism Map of Ground Motion Parameters in China (GB18306-2001) and Code for seismic design of buildings (GB50011-2001). These two norms provide basic principles for the work but there are still some differences between them in determining response spectrum of ground motion. The differences are discussed in the paper. Since the earthquake risk level is changed for different geotechnical engineering, geotechnical engineers with earthquake knowledge is the best technician for the work. The discussion in this paper is helpful for geotechnichal engineers to understand the key problem.

Key words: geotechnical engineering, design parameters of ground motion, seismic zoning

CLC Number: 

  • TU 435
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] FAN Wen-liang, WANG Yu-le, WEI Qi-ke, YANG Peng-chao, LI Zheng-liang, . Improved fourth-moment method for reliability analysis of geotechnical engineering [J]. , 2018, 39(4): 1463-1468.
[2] HUANG Ming-hua, ZHAO Ming-hua, CHEN Chang-fu. Influence of anchorage length on stress in bolt and its critical value calculation [J]. , 2018, 39(11): 4033-4041.
[3] XIONG Zi-ming, LU Hao, WANG Ming-yang, QIAN Qi-hu, RONG Xiao-li,. Research progress on safety risk management for large scale geotechnical engineering construction in China [J]. , 2018, 39(10): 3703-3716.
[4] FANG Yan-bing, SU Yong-hua, XIAO Wang, LIANG Bin. Non-probabilistic reliability model for implicit performance function based on subinterval method [J]. , 2017, 38(4): 1171-1178.
[5] YAN Shu-wang, LIN Shu, HUO Zhi-liang, CHU Jian, GUO Wei,. Coupled Eulerian-Lagrangian finite element analysis of suction caisson penetration processes under hydraulic pressure [J]. , 2017, 38(1): 247-252.
[6] FU Xiao-dong,SHENG Qian,ZHANG Yong-hui,LENG Xian-lun, . High efficient algorithms for solving linear equations in discontinuous deformation analysis [J]. , 2016, 37(4): 1171-1178.
[7] ZHANG You-liang, TAN Fei, ZHANG Li-ren, SHI Ming-ming. Scalable parallel computation for finite element model with hundreds of millions of elements in geotechnical engineering [J]. , 2016, 37(11): 3309-3316.
[8] ZHANG Lei , TANG Xiao-song , LI Dian-qing , CAO Zi-jun , . System reliability analysis of geotechnical structures based on the Copula function [J]. , 2016, 37(1): 193-202.
[9] CHEN Guo-xing ,JIN Dan-dan ,ZHU Jiao ,LI Xiao-jun , . Nonlinear seismic response of estuarine basin and design parameters of ground motion [J]. , 2015, 36(6): 1721-1736.
[10] DONG Wei-xin, WANG Xiang-nan, WANG Yuan, YU Yu-zhen. Application of three-dimensional transitional isoparametric elements to finite element analysis of geotechnical engineering problems [J]. , 2015, 36(5): 1455-1462.
[11] WANG Hao , QIN Wei-min , JIAO Yu-yong , HE Zheng . Transitions and opportunities of geotechnical engineering monitoring in coming big data era [J]. , 2014, 35(9): 2634-2641.
[12] FU Xiao-dong, SHENG Qian, ZHANG Yong-hui. Parallel computing method for discontinuous deformation analysis using OpenMP [J]. , 2014, 35(8): 2401-2407.
[13] SHEN Hui , LUO Xian-qi , ZHENG An-xing , BI Jin-feng , WENG Yong-hong,. Three-dimensional modeling for numerical simulation of arch dam abutment rock mass structures [J]. , 2014, 35(5): 1455-1460.
[14] ZUO Yu-long , ZHU He-hua , LI Xiao-jun . An ANN-based four order moments method for geotechnical engineering reliability analysis [J]. , 2013, 34(2): 513-518.
[15] LI Yuan-song , YU Shun-xin , DENG Tao . Comparing three design approaches in EN1997-1 Eurocode with those in Chinese geotechnical design code [J]. , 2012, 33(S2): 105-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[2] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[3] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[4] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[5] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[6] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[7] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[8] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .
[9] LIU Zhen-ping, HE Huai-jian, ZHU Fa-hua. Study of technology of fast 3D modeling and visualization based on borehole data[J]. , 2009, 30(S1): 260 -266 .
[10] ZHAO Yue-tang, LIN Jia-wei, SHI Lei. Research of spalling under impulse loading[J]. , 2011, 32(S2): 122 -126 .