›› 2017, Vol. 38 ›› Issue (1): 247-252.doi: 10.16285/j.rsm.2017.01.031

• Numerical Analysis • Previous Articles     Next Articles

Coupled Eulerian-Lagrangian finite element analysis of suction caisson penetration processes under hydraulic pressure

YAN Shu-wang1, LIN Shu1, HUO Zhi-liang1, CHU Jian2, GUO Wei3   

  1. 1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; 2. Department of Civil, Construction & Environmental Engineering, Iowa State University, Ames, USA; 3. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
  • Received:2015-01-28 Online:2017-01-11 Published:2018-06-05

Abstract: Earth penetration in geotechnical engineering is difficult to model, due to its transient, coupled nature of the impact event. The interaction between the penetrator and the target is inherently coupled due to the vastly different material response. It is a challenging subject to simulate such problems properly. The traditional finite element method presents difficulties in convergence, unreasonable assumptions and professional interpolation routines. Nevertheless, the coupled Eulerian-Lagrangian method which combines the advantages of Lagrangian and Eulerian method can efficiently resolve the issue. Model tests are carried out to study the behavior of suction caisson jack installed in different types of consolidated soils. The penetration effect on the soil inside the caisson, i.e. soil plugs. is also investigated. The coupled Eulerian-Lagranginan (CEL) finite element method is performed to simulate the experiment process; the results are consistent with test data. The numerical simulating methods of penetration in geotechnical engineering discussed in this paper are accessible for those interested researchers.

Key words: geotechnical engineering, penetration, CEL method, suction caisson, soil plug

CLC Number: 

  • TU 470

[1] FAN Yi-fei, WANG Jian-hua, . Method to analyze the effect of spudcan penetration on an adjacent pile group [J]. Rock and Soil Mechanics, 2020, 41(7): 2360-2368.
[2] HE Jing-bin, FENG Zhong-ju, DONG Yun-xiu, HU Hai-bo, LIU Chuang, GUO Sui-zhu, ZHANG Cong, WU Min, WANG Zhen, . Dynamic response of pile foundation under pile-soil-fault coupling effect in meizoseismal area [J]. Rock and Soil Mechanics, 2020, 41(7): 2389-2400.
[3] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[4] HUANG Xiao-hu, YI Wu, HUANG Hai-feng, DENG Yong-huang. Study and application of the relationship between preferential flow penetration and slope deformation [J]. Rock and Soil Mechanics, 2020, 41(4): 1396-1403.
[5] TIAN Wei, WANG Zhen, ZHANG Li, YU Chen. Mechanical properties of 3D printed rock samples subjected to high temperature treatment [J]. Rock and Soil Mechanics, 2020, 41(3): 961-969.
[6] DAI Guo-liang, ZHU Wen-bo, GUO Jing, GONG Wei-ming, ZHAO Xue-liang, . Experiments on vertical uplift bearing capacity of suction caisson foundation in soft clay [J]. Rock and Soil Mechanics, 2019, 40(S1): 119-126.
[7] MA Wen-guan, LIU Run, LIAN Ji-jian, GUO Shao-zeng. The study of penetration resistance of bucket foundation in silt [J]. Rock and Soil Mechanics, 2019, 40(4): 1307-1312.
[8] WANG Teng, WU Rui. Study of vertical penetration resistance of seabed pipelines in cohesive soil [J]. Rock and Soil Mechanics, 2019, 40(3): 871-878.
[9] SHA Fei, LI Shu-cai, LIN Chun-jin, LIU Ren-tai, ZHANG Qing-song, YANG Lei, LI Zhao-feng. Research on penetration grouting diffusion experiment and reinforcement mechanism for sandy soil porous media [J]. Rock and Soil Mechanics, 2019, 40(11): 4259-4269.
[10] ZHAO Qiang, JIAO Yu-yong, ZHANG Xiu-li, XIE Bi-ting, WANG Long, HUANG Gang-hai, . Explicit time integration based spherical DDA calculation method [J]. Rock and Soil Mechanics, 2019, 40(11): 4515-4522.
[11] ZHU Xiao-jun, LI Wen-shuai, FEI Kang, KONG Wei-yang, GONG Wei-ming, . Load analysis of bucket-soil interaction of bucket foundation in sand during jacked penetration [J]. Rock and Soil Mechanics, 2019, 40(1): 199-206.
[12] YANG Su-chun, ZHANG Ming-yi, WANG Yong-hong, SANG Song-kui, MIAO De-zi. Field test on pile tip resistance of closed-end jacked pipe pile penetrating into layered foundation [J]. Rock and Soil Mechanics, 2018, 39(S2): 91-99.
[13] DING Hong-yan, JIA Nan, ZHANG Pu-yang, . Research of seepage characteristics and penetration resistance during installation of bucket foundations in sand [J]. , 2018, 39(9): 3130-3138.
[14] ZHANG Cong, LIANG Jing-wei, ZHANG Jian, YANG Jun-sheng, ZHANG Gui-jin, YE Xin-tian,. Mechanism of Bingham fluid permeation and diffusion based on pulse injection [J]. , 2018, 39(8): 2740-2746.
[15] JI En-yue, ZHU Jun-gao, YU Ting, JIN Wei,. Analytic solution and test validation of membrane penetration [J]. , 2018, 39(8): 2780-2786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!