›› 2014, Vol. 35 ›› Issue (6): 1607-1616.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Solution of consolidation by surcharge preloading considering compressibility and varying hydraulic conductivities in smear zone

XU Bo1, 2, 3, LEI Guo-hui1, 2, ZHENG Qiang1, 2, LIU Jia-cai4   

  1. 1. Key Laboratory of Geomechanics and Embankment Engineering of Ministry of Education, Hohai University, Nanjing 210098, China; 2. Geotechnical Research Institute, Hohai University, Nanjing 210098, China; 3. Nanjing Branch of Hong Kong Huayi Design Consultants (Shenzhen) Company, Nanjing 210037, China; 4. College of Transportation Science and Engineering, Nanjing Tech University, Nanjing 210009, China
  • Received:2013-03-08 Online:2014-06-10 Published:2014-06-20

Abstract: An explicit analytical solution of the partial differential equations of consolidation by vertical drains is derived to assess the effects of compressibility and varying hydraulic conductivities of soils in the smear zone on ground consolidation. Equal volumetric strain assumption is adopted. The compressive deformation of soils in the smear zone is considered, together with a linear and a parabolic distribution of the horizontal hydraulic conductivity along the radial direction. Well resistance is also considered, together with an arbitrarily distributed mean stress increasing along the depth of ground. The solution is derived for the consolidation under a linearly time-varied surcharge preloading. The proposed solution is used to analyze the influences of the radius of smear zone, the distribution of horizontal hydraulic conductivity and the coefficient of volumetric compressibility of smeared soils on the global average degree of consolidation. It is found that the rate of ground consolidation is underestimated by the solution derived by applying a uniformly reduced horizontal hydraulic conductivity to the smeared soils. When the radius of smear zone is relatively large, the rate of ground consolidation is overestimated by the solution derived without consideration of the compressive deformation of the smeared soils. These effects should not be overlooked in the analysis of consolidation by vertical drains.

Key words: vertical drain, linear loading with time, smear, well resistance, excess pore water pressure, consolidation degree

CLC Number: 

  • TU 472.3+3
[1] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[2] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[3] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[4] WANG Peng-fei, TAN Wen-hui, MA Xue-wen, LI Zi-jian, LIU Jing-jun, WU Yang-fan, . Relationship between strength parameter and water content of fault gouge with different degrees of consolidation [J]. Rock and Soil Mechanics, 2019, 40(5): 1657-1662.
[5] XIA Tang-dai, ZHENG Qing-qing, CHEN Xiu-liang, . Predicting excess pore water pressure under cyclic loading with regular intervals based on cumulative dynamic deviator stress level [J]. Rock and Soil Mechanics, 2019, 40(4): 1483-1490.
[6] YANG Ai-wu, PAN Ya-xuan, CAO Yu, SHANG Ying-jie, WU Ke-long, . Laboratory experiment and numerical simulation of soft dredger fill with low vacuum pre-compression [J]. Rock and Soil Mechanics, 2019, 40(2): 539-548.
[7] MENG Yu-han, CHEN Zheng, FENG Jian-xue, LI Hong-po, MEI Guo-xiong, . Optimization of one-dimensional foundation with sand blankets under the non-uniform distribution of initial excess pore water pressure [J]. Rock and Soil Mechanics, 2019, 40(12): 4793-4800.
[8] HUANG Chao-xuan. Research on nonlinear consolidation calculation of foundation treated with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(12): 4819-4827.
[9] ZHU Min, GONG Xiao-nan, GAO Xiang, LIU Shi-ming, YAN Jia-jia, . Volume of fluid method based finite element analysis of fracture grouting [J]. Rock and Soil Mechanics, 2019, 40(11): 4523-4532.
[10] YANG Peng, PU He-fu, SONG Ding-bao. Analysis of large-strain consolidation of soft soil foundation with prefabricated vertical drains [J]. Rock and Soil Mechanics, 2019, 40(10): 4049-4056.
[11] WANG Yong-hong, ZHANG Ming-yi, LIU Jun-wei, BAI Xiao-yu, . Influence of excess pore water pressure on shear strength of pile-soil interface in clayey soil [J]. , 2018, 39(3): 831-838.
[12] YANG Yao-hui, CHEN Yu-min, LIU Han-long, LI Wen-wen, JIANG Qiang, . Investigation on liquefaction resistance performance of rigid-drainage pile groups by shaking table [J]. , 2018, 39(11): 4025-4032.
[13] HUANG Chao-xuan, WANG Zheng-zhong, FANG Yong-lai,. Analytical solution of vacuum preloading foundation considering air leakage and nonlinear well resistance [J]. , 2017, 38(9): 2574-2582.
[14] LIU Yong, QI Lan, LI Shao-ming, GUO Hao-yang,. 3D Finite element analysis of vacuum preloading considering inconstant well resistance and smearing effects [J]. , 2017, 38(5): 1517-1523.
[15] LIN Cheng-fu, LEI Guo-hui, . Responses of negative excess pore water pressure under unloading in one-dimensional swelling tests [J]. , 2017, 38(12): 3613-3618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[2] WAN Zhi, DONG Hui, LIU Bao-chen. On choice of hyper-parameters of support vector machines for time series regression and prediction with orthogonal design[J]. , 2010, 31(2): 503 -508 .
[3] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[4] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[5] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[6] WANG Xue-wu,XU Shang-jie,DANG Fa-ning,CHENG Su-zhen. Analysis of stability of dam slope during rapid drawdown of reservoir water level[J]. , 2010, 31(9): 2760 -2764 .
[7] WANG Wei-ming, SUN Rui, CAO Zhen-zhong, YUAN Xiao-ming. Comparative study of features of liquefied sites at home and abroad[J]. , 2010, 31(12): 3913 -3918 .
[8] WANG Guang-jin,YANG Chun-he ,ZHANG Chao,MA Hong-ling,KONG Xiang-yun ,HO. Research on particle size grading and slope stability analysis of super-high dumping site[J]. , 2011, 32(3): 905 -913 .
[9] HU Hai-jun, JIANG Ming-jing, ZHAO Tao, PENG Jian-bing, LI Hong. Effects of specimen-preparing methods on tensile strength of remolded loess[J]. , 2009, 30(S2): 196 -199 .
[10] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .