Rock and Soil Mechanics ›› 2019, Vol. 40 ›› Issue (12): 4819-4827.doi: 10.16285/j.rsm.2018.2030

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on nonlinear consolidation calculation of foundation treated with prefabricated vertical drains

HUANG Chao-xuan   

  1. Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, Zhejiang 310002, China
  • Received:2018-11-05 Online:2019-12-11 Published:2020-01-04
  • Supported by:
    This work was supported by the Zhejiang Basic Public Welfare Research Project(LGF18E090004) and the Zhejiang Water Resources Science and Technology Project(RC1701).

Abstract: Considering the deficiency of the nonlinear consolidation calculations of vertical drains foundations solved by approximate equivalent method, and based on the assumption of plastic drainage plate elliptical column, the horizontal permeability coefficient and compression of foundation soil are deduced using the soft soil consolidation theory. An analytical solution for the nonlinear consolidation is given by the nonlinear differential equation theory, which considered the drainage plate under the influence of compressive modulus with nonlinear variation of the consolidation process. By comparing with the results in Indraratna (2005), it is considered that the larger the ideal vertical drains foundations preload load (the larger Nu) is, the greater the error obtained by the approximation method in Indraratna et al. (2005), and this error can be up to 16% compared with the results in this paper when the Cc/Ck=1.8 and Nu=5. The results reveal that the analytical solution proposed in this paper is aligned with the exact numerical solution, and the theory suggested is more effective in engineering application.

Key words: vertical drains foundations, prefabricated vertical drain(PVD), elliptic cylindrical theory, nonlinear consolidation, pore water pressure, well resistance, analytical solution

CLC Number: 

  • TU 470
[1] ZHANG Xiao-ling, ZHU Dong-zhi, XU Cheng-shun, DU Xiu-li, . Research on p-y curves of soil-pile interaction in saturated sand foundation in weakened state [J]. Rock and Soil Mechanics, 2020, 41(7): 2252-2260.
[2] JIANG Liu-hui, LI Chuan-xun, YANG Yi-qing, ZHANG Rui. Approximate analytical solutions for one-dimensional nonlinear consolidation of double-layered soil under time-dependent loading [J]. Rock and Soil Mechanics, 2020, 41(5): 1583-1590.
[3] ZHANG Sheng, GAO Feng, CHEN Qi-lei, SHENG Dai-chao, . Experimental study of fine particles migration mechanism of sand-silt mixtures under train load [J]. Rock and Soil Mechanics, 2020, 41(5): 1591-1598.
[4] SHI Xu-chao, SUN Yun-de. Analysis of the evolution of excess pore water pressure in soft soil under linear unloading [J]. Rock and Soil Mechanics, 2020, 41(4): 1333-1338.
[5] ZHU Yan-peng, YAN Zi-hao, ZHU Yi-fan. Stability calculation of micro steel tube mortar composite pile in soil [J]. Rock and Soil Mechanics, 2020, 41(4): 1339-1346.
[6] LIU Guo-zhao, QIAO Ya-fei, HE Man-chao, FAN Yong, . An analytical solution of longitudinal response of tunnels under dislocation of active fault [J]. Rock and Soil Mechanics, 2020, 41(3): 923-932.
[7] CHENG Tao, YAN Ke-qin, HU Ren-jie, ZHENG Jun-jie, ZHANG Huan, CHEN He-long, JIANG Zhi-jie, LIU Qiang, . Analytical method for quasi-two-dimensional plane strain consolidation problem of unsaturated soil [J]. Rock and Soil Mechanics, 2020, 41(2): 453-460.
[8] MENG Yu-han, ZHANG Bi-sheng, CHEN Zheng, MEI Guo-xiong, . Consolidation analysis of foundation with sand blankets under ramp loading [J]. Rock and Soil Mechanics, 2020, 41(2): 461-468.
[9] WU Qi, DING Xuan-ming, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu, . Seismic response of pile-soil-structure in coral sand under different earthquake intensities [J]. Rock and Soil Mechanics, 2020, 41(2): 571-580.
[10] LIU Zhong-yu, XIA Yang-yang, ZHANG Jia-chao, ZHU Xin-mu. One-dimensional elastic visco-plastic consolidation analysis of saturated clay considering Hansbo’s flow [J]. Rock and Soil Mechanics, 2020, 41(1): 11-22.
[11] ZHANG Yu-guo, WAN Dong-yang, ZHENG Yan-lin, HAN Shuai, YANG Han-yue, DUAN Meng-meng. Analytical solution for consolidation of vertical drain under vacuum preloading considering the variation of radial permeability coefficient [J]. Rock and Soil Mechanics, 2019, 40(9): 3533-3541.
[12] ZHANG Zhi-guo, HUANG Mao-song, YANG Xuan, . Analytical solution for dissipation of excess pore water pressure and soil consolidation settlement induced by tunneling under the influence of long-term leakage [J]. Rock and Soil Mechanics, 2019, 40(8): 3135-3144.
[13] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[14] XIA Cai-chu, LIU Yu-peng, WU Fu-bao, XU Chen, DENG Yun-gang, . Viscoelasto-viscoplastic solutions for circular tunnel based on Nishihara model [J]. Rock and Soil Mechanics, 2019, 40(5): 1638-1648.
[15] HE Gui-cheng, LIAO Jia-hai, LI Feng-xiong, WANG Zhao, ZHANG Qiu-cai, ZHANG Zhi-jun. A coupled thermo- pore water-mechanical model for a weak interlayer in water saturated slope and its application [J]. Rock and Soil Mechanics, 2019, 40(5): 1663-1672.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!