›› 2014, Vol. 35 ›› Issue (6): 1623-1628.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Field test on earth pressure of ancient seawall with different backfills for Qiantang River

ZHENG Ye,CHEN Zhen-hua,ZHANG Kai-wei,ZHANG Jian-wei,SHEN Yue-jun   

  1. Reconnaissance and Design Institute, Qiantang River Administration of Zhejiang, Hangzhou 310016, China
  • Received:2013-02-26 Online:2014-06-10 Published:2014-06-20

Abstract: In order to solve the inclined problem of the ancient seawall, the earth pressure on the ancient seawall with different types of backfills are observed based on the in-situ test. Three types of ancient seawall are filled with different backfills as the foamed cement banking (FCB), natural soil and shale ceramisite respectively. The law that the earth pressure changed with time is analyzed, also including the distribution of the earth pressure and the location of resultant force point. The unloading effects of the three different filled materials are discussed. The distribution of earth pressure is nonlinearly folded at different levels in the middle of the wall. The earth pressure is higher in the middle and lower at the both top and bottom of ancient seawall. The height of actual action point of earth pressure resultant from field measuring is 0.42-0.49 times of the wall height which is upper than the theoretic calculating result. FCB is an effective unloading filled material used to decrease the pressure on the ancient seawall that it can reduce the earth pressure and overturning moment by 33.1% and 41.4% respectively comparing with undisturbed soil.

Key words: earth pressure, action point of earth pressure resultant, load reduction, ancient seawall, field test

CLC Number: 

  • TU 432
[1] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[2] LU Chen-kai, KONG Gang-qiang, SUN Guang-chao, CHEN Bin, YIN Gao-xiang, . Field tests on thermal-mechanical coupling characteristics of energy pile in pile-raft foundation [J]. Rock and Soil Mechanics, 2019, 40(9): 3569-3575.
[3] WU Shuang-shuang, HU Xin-li, GONG Hui, ZHOU Chang, XUChu, WANG Qiang, YING Chun-ye, . Shear properties of pile-soil of three modes of bored piles in field tests [J]. Rock and Soil Mechanics, 2019, 40(7): 2838-2846.
[4] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[5] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[6] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[7] YU Yu, LIU Xin-rong, LIU Yong-quan, . Field experimental investigation on prestress loss law of anchor cable in foundation pits [J]. Rock and Soil Mechanics, 2019, 40(5): 1932-1939.
[8] WANG Qin-ke, MA Jian-lin, HU Zhong-bo, WANG Bin, . Field tests on bearing behaviors of uplift piles in soft rock with shallow overburden [J]. Rock and Soil Mechanics, 2019, 40(4): 1498-1506.
[9] XIN Ya-wen, ZHOU Zhi-fang, MA Jun, LI Ming-wei, CHEN Meng, WANG Shan, HU Zun-yue, . A method for determining aquitard hydraulic parameters based on double-tube field test [J]. Rock and Soil Mechanics, 2019, 40(4): 1535-1542.
[10] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[11] ZHU Jun-gao, JIANG Ming-jie, LU Yang-yang, JI En-yue, LUO Xue-hao, . Experimental study on influence of stress state on at-rest earth pressure coefficient for coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(3): 827-833.
[12] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[13] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[14] LIANG Bo, LI Yan-jun, LING Xue-peng, ZHAO Ning-yu, ZHANG Qing-song, . Determination of earth pressure by miniature earth pressure cell in centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(2): 818-826.
[15] ZHANG Ye-qin, CHEN Bao-guo, MENG Qing-da, XU Xin, . Stress mechanism and foundation contact pressure of high fill culvert under load reduction condition [J]. Rock and Soil Mechanics, 2019, 40(12): 4813-4818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[2] LI Jing,MIAO Lin-chang,ZHONG Jian-chi,FENG Zhao-xiang. Deformation and damping characteristics of EPS beads-mixed lightweight soil under repeated load-unloading[J]. , 2010, 31(6): 1769 -1775 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] KONG Xiang-xing, XIA Cai-chu, QIU Yu-liang, ZHANG Li-ying, GONG Jian-wu. Study of construction mechanical behavior of parallel-small spacing metro tunnels excavated by shield method and cross diaphragm (CRD) method in loess region[J]. , 2011, 32(2): 516 -524 .
[7] WANG Zhen-hong,ZHU Yue-ming,WU Quan-huai,ZHANG Yu-hui. Thermal parameters of concrete by test and back analysis[J]. , 2009, 30(6): 1821 -1825 .
[8] GU Shuan-cheng, SU Pei-li, WANG Jian-wen, WANG Hong-ke. Study of peculiarity of burnt rock mass and its grouting spreading behavior[J]. , 2009, 30(S2): 60 -63 .
[9] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[10] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .