›› 2014, Vol. 35 ›› Issue (6): 1641-1646.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Macroscopic properties and microstructure analyses of deep-sea sediment

MA Wen-bo1, RAO Qiu-hua1, WU Hong-yun2, GUO Shuai-cheng1, LI Peng1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan, 410012, China; 2. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China
  • Received:2013-02-16 Online:2014-06-10 Published:2014-06-20

Abstract: The deep-sea sediment is exploited in the Pacific C-C district by our research group. Its physico-mechanical properties are studied by analysis of laser particle size, test of liquid and plastic limit, tests of nitrogen adsorption, consolidation and direct shear, and its mineral compositions and microstructures are analyzed by X-ray diffraction(XRD) and scanning electronic microscope(SEM) methods, respectively. Test results show that the deep-sea sediment is clay soil with predominant silt. It has properties of high liquid limit, high plasticity, high specific surface area, high consolidation coefficient, low compressive modulus and low shear strength, which easily results in slip and subsidence of the deep-sea mining machine. It is mainly composed of montmorillonite, quartz, feldspar, mica, chlorite and serpentine, with sheet-linked microstructure of silt and microbial debris filling with honeycomb flocculation microstructure of clay mineral together. The simulative soil substituting for the deep-sea sediment should be prepared based on the mineral composition, particle size, water content, specific surface area and shear strength as well as liquid limit, plastic limit and microstructure of the deep-sea sediment. The research results can provide an important basis for walking-characteristic study and optimization design of the deep-sea mining machine.

Key words: physical properties, mechanical properties, mineral composition, microstructure, deep-sea sediment

CLC Number: 

  • TU 411.3
[1] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[2] XU Yun-shan, SUN De-an, ZENG Zhao-tian, LÜ Hai-bo, . Temperature effect on thermal conductivity of bentonites [J]. Rock and Soil Mechanics, 2020, 41(1): 39-45.
[3] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[4] LIU Bo, MA Yong-jun, SHENG Hai-long, CHANG Ya-ru, YU Jun-jie, JIA Shuai-long, . Experiments on mechanical properties of Cretaceous red sandstone after freeze-thaw process [J]. Rock and Soil Mechanics, 2019, 40(S1): 161-171.
[5] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[6] LEI Jiang, CHEN Wei-zhong, LI Fan-fan, YU Hong-dan, MA Yong-shang, XIE Hua-dong, WANG Fu-gang, . Mechanical properties of surrounding rock in diversion tunnel of water diversion project from Hongyan River to Shitou River [J]. Rock and Soil Mechanics, 2019, 40(9): 3435-3446.
[7] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[8] WANG Chong, HU Da-wei, REN Jin-ming, ZHOU Hui, LU Jing-jing, LIU Chuan-xin, . Influence of erosive environment on permeability and mechanical properties of underground structures [J]. Rock and Soil Mechanics, 2019, 40(9): 3457-3464.
[9] HAN Gang, ZHOU Hui, CHEN Jian-lin, ZHANG Chuan-qing, GAO Yang, SONG Gui-hong, HONG Wang-bing, . Engineering geological properties of interlayer staggered zones at Baihetan hydropower station [J]. Rock and Soil Mechanics, 2019, 40(9): 3559-3568.
[10] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[11] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[12] CHEN Min, ZHANG Tao, SHAN Hua-gang, WANG Xin-zhi, MENG Qing-shan, YU Ke-fu, . Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275-2283.
[13] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
[14] CONG Yi, CONG Yu, ZHANG Li-ming, JIA Le-xin, WANG Zai-quan, . 3D particle flow simulation of loading-unloading failure process of marble [J]. Rock and Soil Mechanics, 2019, 40(3): 1179-1186.
[15] WANG Deng-ke, SUN Liu-tao, WEI Jian-ping, . Microstructure evolution and fracturing mechanism of coal under thermal shock [J]. Rock and Soil Mechanics, 2019, 40(2): 529-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] GUAN Yun-fei,GAO Feng,ZHAO Wei-bing,YU Jin. Secondary development of modified Cambridge model in ANSYS software[J]. , 2010, 31(3): 976 -980 .
[2] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[3] HE Xian-long, ZHAO Li-zhen. Analysis of shear wave velocity based on multiple cross-correlation functions[J]. , 2010, 31(8): 2541 -2545 .
[4] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[5] ZHANG Chun-hui, ZHAO Quan-sheng. Early warning system of mining subsidence damage based on ARCGIS[J]. , 2009, 30(7): 2197 -2202 .
[6] SUN Jian , WANG Lian-guo , TANG Fu-rong , SHEN Yi-feng , GONG Shi-long. Microseismic monitoring failure characteristics of inclined coal seam floor[J]. , 2011, 32(5): 1589 -1595 .
[7] XU Zheng-ming, XUE Qiang, ZHAO Ying. Research on time effect of modified sludge composites by triaxial tests on mechanical properties[J]. , 2011, 32(6): 1713 -1718 .
[8] CHEN Ming , HU Ying-guo , LU Wen-bo , YAN Peng , ZHOU Chuang-bing. Blasting excavation induced damage characteristics of diversion tunnel for Jinping cascade II hydropower station[J]. , 2011, 32(S2): 172 -177 .
[9] WANG Tao , LI Yang , ZHOU Yong , Lü Qing , LIU Da-wei. Research on safety specific report of phosphogypsum tailings ponds[J]. , 2011, 32(S2): 407 -412 .
[10] QIAO Chun-jiang , CHEN Wei-zhong , WANG Hui , TIAN Hong-ming , TAN Xian-jun. Study of construction method of tunnel in shallow broken rock mass[J]. , 2011, 32(S2): 455 -462 .