›› 2004, Vol. 25 ›› Issue (7): 1131-1134.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Prediction of soft soil foundations settlements based on genetic algorithm

XIA Jiang1,2, YAN Ping1, ZHUANG Yi-zhou1,XU Xiang-ming3   

  1. 1. Department of Civil Engineering, Zhejiang University, Hangzhou 310027, China;2. College of Civil Engineering, Tongji University, Shanghai 200092,China;3. Zhejiang Education Development Center, Hangzhou 310012, China
  • Received:2003-05-14 Online:2004-07-09 Published:2014-07-18

Abstract: Genetic algorithm based on natural evolutionism is a good method to resolve complicated geotechnic nonlinear problems. Some classical works on genetic algorithm are introduced and remarked. The settlement of a soft soil foundation often manifests as complicated features at time sequence due to the influence of many factors. In the settlement prediction of a reinforcement and slant rectification, genetic algorithm programme coded by MATLAB predicts the settlement. Calculation result is consistent with the result from actual measurement. It indicates that genetic algorithm has much more superiority than traditional algorithm in global optimization, nonlinear optimization, multiparameter optimization, and so on.

Key words: genetic algorithm, settlement prediction, back analysis, soft soil foundation

CLC Number: 

  • TU 447
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MA Chun-hui, YANG Jie, CHENG Lin, LI Ting, LI Ya-qi, . Adaptive inversion analysis of material parameters of rock-fill dam based on QGA-MMRVM [J]. Rock and Soil Mechanics, 2019, 40(6): 2397-2406.
[2] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[3] DONG Zhi-hong, NIU Xin-qiang, DING Xiu-li, WENG YongHong, HUANG Shu-ling, PEI Qi-tao, ZHANG Lian, . Deformation characteristics and feedback analysis of surrounding rock of underground powerhouse at left bank of Wudongde Hydropower Station [J]. Rock and Soil Mechanics, 2018, 39(S2): 326-336.
[4] SUN Ming-she, MA Tao, SHEN Zhi-jun, WU Xu, WANG Meng-shu,. Study of lining sharing surrounding rock pressure in composite lining structure [J]. , 2018, 39(S1): 437-445.
[5] WANG Shao-jie, LU Ai-zhong, ZHANG Xiao-li. Analytical method of displacement back analysis for horseshoe tunnel excavated in transverse isotropic rock mass [J]. , 2018, 39(S1): 495-504.
[6] WEN Shu-jie, LIANG Chao, SONG Liang-liang, LIU Gang,. Search strategy of three-dimensional critical slip surface based on minimum potential energy [J]. , 2018, 39(7): 2708-2714.
[7] LI Jian-peng, NIE Qing-ke, LIU Quan-sheng, YU Jun-chao,. Risk assessment method of karst ground collapse based on weight back analysis [J]. , 2018, 39(4): 1395-1400.
[8] WANG Hong-bo, ZHANG Qing-song, LIU Ren-tai, LI Shu-cai,ZHANG Le-wen, ZHENG Zhuo, ZHANG Lian-zheng. Inverse analysis of seepage field from packer permeability test [J]. , 2018, 39(3): 985-992.
[9] MENG Wei, HE Chuan, WANG Bo, ZHANG Jun-bo, WU Fang-yin, XIA Wu-yang. Two-stage back analysis of initial geostress field in rockburst area based on lateral pressure coefficient [J]. , 2018, 39(11): 4191-4200.
[10] TIAN Mao-lin, XIAO Hong-tian, YAN Qiang-gang,. Displacement back analysis of rock parameters of Hoek-Brown criterion using nonlinear regression method [J]. , 2017, 38(S1): 343-350.
[11] YUAN Yan-ling, GUO Qin-qin, ZHOU Zheng-jun, WU Zhen-yu, CHEN Jian-kang, YAO Fu-hai,. Back analysis of material parameters of high core rockfill dam considering parameters correlation [J]. , 2017, 38(S1): 463-470.
[12] LI Hong-jiang , TONG Li-yuan, LIU Song-yu, GU Ming-fen, LU Zhan-qiu,. Displacement standards for lateral capacity of rigid pile and flexible pile in soft soil foundation [J]. , 2017, 38(9): 2676-2682.
[13] ZHANG She-rong, HU An-kui, WANG Chao, PENG Zhen-hui, . Three-dimensional intelligent inversion method for in-situ stress field based on SLR-ANN algorithm [J]. , 2017, 38(9): 2737-2745.
[14] CAO Wen-gui, YIN Peng, HE Min, LIU Tao. A combination method for predicting settlement based on new or old degree of data and adjustment of value interval of prediction [J]. , 2017, 38(2): 534-540.
[15] XIAO Zhong, GE Bo-rui, WANG Yuan-zhan, WANG Yan, . Influence of cruciform inner clapboards on uniaxial bearing capacity and failure mode of bucket foundation [J]. , 2017, 38(11): 3136-3144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Shu-lin,LI Fang,CHEN Jun. Electrical resistivity measurement for lime-stabilized silt soil[J]. , 2010, 31(1): 51 -55 .
[2] LI Ying-yong,ZHANG Ding-li,ZHANG Hong-bo,SONG Xiu-guang. Research on failure mechanism and effects of prestressed anchor cables for reinforcing slopes[J]. , 2010, 31(1): 144 -150 .
[3] LIANG Jian-wei, FANG Ying-guang, GU Ren-guo. Analysis of microelectric field effect of seepage in tiny-particle clay[J]. , 2010, 31(10): 3043 -3050 .
[4] WANG Li-yan,JIANG Peng-ming,LIU Han-long. Mechanism analysis of residual liquefied deformation of breakwater during earthquake[J]. , 2010, 31(11): 3556 -3562 .
[5] LI Xiu-zhen,WANG Cheng-hua,DENG Hong-yan. A comparison of distance and Fisher discrimination methods applied to identifying potential landslides[J]. , 2011, 32(1): 186 -192 .
[6] WANG Zhen-hong,ZHU Yue-ming,WU Quan-huai,ZHANG Yu-hui. Thermal parameters of concrete by test and back analysis[J]. , 2009, 30(6): 1821 -1825 .
[7] JI Wu-jun. Investigation and analysis of engineering problems for loess tunnels[J]. , 2009, 30(S2): 387 -390 .
[8] CHEN Li-hua , LIN Zhi , LI Xing-ping. Study of efficacy of systematic anchor bolts in highway tunnels[J]. , 2011, 32(6): 1843 -1848 .
[9] ZHENG Gang ZHANG Li-ming DIAO Yu. Analysis of working performance of piles beneath excavation bottom and settlement calculation[J]. , 2011, 32(10): 3089 -3096 .
[10] MA Gang , CHANG Xiao-lin , ZHOU Wei , ZHOU Chuang-bing . Deep anti-sliding stability analysis of gravity dam based on Cosserat continuum theory[J]. , 2012, 33(5): 1505 -1512 .