›› 2003, Vol. 24 ›› Issue (1): 123-126.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Verhulst mode for predicting foundation settlement

SONG Yan-Hui,NIE De-Xin   

  1. Geological Engineering Institute,Chengdu University of Technology, Chengdu 610059, China
  • Received:2001-12-27 Online:2003-02-10 Published:2014-08-27

Abstract: In present, the relation between foundation settlement and time always is set up by permeability-consolidation theory, but because there have many presumptive conditions and the factors acting on the permeability-consolidation, it is also very complicated, and the calculation result is always inconsistent with the observed value. By analyzing the process of the foundation settlement and characteristics of Verhulst mode, the foundation settlement of various periods after-construction can be predicted according to observed values in construction period by applying the Verhulst mode. The predicted example shows that the Verhulst mode is very effective and can be applied to the practice

Key words: foundation settlement, prediction, Verhulst mode

CLC Number: 

  • TU 433
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Gang, PAN Yi-shan, XIAO Xiao-chun, . Study and application of failure characteristics and charge law of coal body under uniaxial loading [J]. Rock and Soil Mechanics, 2019, 40(5): 1823-1831.
[2] ZHANG Xun, HUANG Mao-song, HU Zhi-ping, . Model tests on cumulative deformation characteristics of a single pile subjected to lateral cyclic loading in sand [J]. Rock and Soil Mechanics, 2019, 40(3): 933-941.
[3] TAN Guo-hong, XIAO Hai-zhu, DU Xun, HU Wen-jun. Settlement analysis of caisson foundation under main tower of a long span cable-stayed bridge for highway and railway [J]. Rock and Soil Mechanics, 2019, 40(3): 1113-1120.
[4] ZHENG Dong, HUANG Jin-song, LI Dian-qing, . An approach for predicting embankment settlement by integrating multi-source information [J]. Rock and Soil Mechanics, 2019, 40(2): 709-719.
[5] ZHONG Guo-qiang, WANG Hao, LI Li, WANG Cheng-tang, XIE Bi-ting, . Prediction of maximum settlement of foundation pit based on SFLA-GRNN model [J]. Rock and Soil Mechanics, 2019, 40(2): 792-798.
[6] FU Dai-guang, ZHOU Li-ming, XIAO Guo-qiang, WANG Fa-gang. Analysis of influence of filter frequency band on tunnel seismic prediction results [J]. Rock and Soil Mechanics, 2018, 39(S2): 315-325.
[7] CHEN Lei, ZHAO Xue-sheng, TANG Yi-xian, ZHANG Hong, . Parameters fitting and evaluation of exponent Knothe model combined with InSAR technique [J]. Rock and Soil Mechanics, 2018, 39(S2): 423-431.
[8] WANG Wei, FANG Zhi-ming, LI Xiao-chun,. Experimental and model analysis of permeability of coal sample from Qinshui basin under hydrostatic pressure conditions [J]. , 2018, 39(S1): 251-257.
[9] FU Zi-guo, QIAO Deng-pan, GUO Zhong-lin, LI Ke-gang, XIE Jin-cheng, WANG Jia-xin. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. , 2018, 39(9): 3147-3156.
[10] LI Xuan, SUN De-an, ZHANG Jun-ran,. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. , 2018, 39(8): 2829-2836.
[11] HAN Zhi-ming, QIAO Chun-sheng, ZHU Ju. Analysis of strength and failure characteristics of rock mass with two sets of cross-persistent joints [J]. , 2018, 39(7): 2451-2460.
[12] SHI Quan-bin, YANG Ping, YU Ke, TANG Guo-yi,. Sub peak adfreezing strength at the interface between frozen soil and structures [J]. , 2018, 39(6): 2025-2034.
[13] KONG Yang, RUAN Huai-ning, HUANG Xue-feng, . Deformation characteristics of compacted Malan loess in Yan’an region under high consolidation pressure [J]. , 2018, 39(5): 1731-1736.
[14] LIU Xin-jin, SU Guo-shao, FENG Xia-ting, YAN Liu-bin,YAN Zhao-fu, ZHANG Jie, LI Yan-fang. Dynamic prediction method of laboratory rockburst using sound signals [J]. , 2018, 39(10): 3573-3580.
[15] CHEN Wei-zhong, MA Chi-shuai, TIAN Hong-ming, YANG Jian-ping,. Discussion on rockburst predictive method applying to TBM tunnel construction [J]. , 2017, 38(S2): 241-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LU Zheng, YAO Hai-lin, LUO Xing-wen, HU Meng-ling. 3D dynamic responses of layered ground under vehicle loads[J]. , 2009, 30(10): 2965 -2970 .
[2] FANG Zhi-ming, LI Xiao-chun, LI Hong, CHEN Han-qiu. Feasibility study of gas mixture enhanced coalbed methane recovery technology[J]. , 2010, 31(10): 3223 -3229 .
[3] XIA Yuan-you, YE Hong, LIU Xiao-he, CHEN Jie. Analysis of shear stress along pressure-type anchorage cable in weathered rock mass[J]. , 2010, 31(12): 3861 -3866 .
[4] WEI Huan-wei,YANG Min,SUN Jian-ping,CHEN Qi-hui. Deformation law and correlation of soil nailing wall based on measured data[J]. , 2009, 30(6): 1753 -1758 .
[5] ZHANG Cheng-ping,ZHANG Ding-li,LUO Jian-jun,WANG Meng-shu,WU Jie-pu. Remote monitoring system applied to the construction of metro station undercrossing existing metro tunnel[J]. , 2009, 30(6): 1861 -1866 .
[6] HOU Wei2, JIA Yong-gang1,2, SONG Jing-tai3, MENG Xiang-mei4, SHAN Hong-xian1, 2. Factors influencing critical shear stress of silty sediment seabed in Yellow River delta[J]. , 2011, 32(S1): 376 -0381 .
[7] TANG Shi-bin, TANG Chun-an, LI Lian-chong, ZHANG Yong-bin. Investigation on time-dependent deformation of tunnel induced by humidity diffusion[J]. , 2011, 32(S1): 697 -0703 .
[8] XI Ren-shuang, CHEN Cong-xin, XIAO Guo-feng, HUANG Ping-lu. Study of influence of discontinuities on rock movement and surface deformation in eastern area of Chengchao iron mine[J]. , 2011, 32(S2): 532 -538 .
[9] HE Si-ming , ZHANG Xiao-xi , WANG Dong-po . Study of computation methods of ultimate uplift capacity and determining position of failure surface of uplift piles in layered soil[J]. , 2012, 33(5): 1433 -1437 .
[10] CHEN Guo-qing , HUANG Run-qiu , ZHOU Hui , XU Qiang , LI Tian-bin . Research on progressive failure for slope using dynamic strength reduction method[J]. , 2013, 34(4): 1140 -1146 .