›› 2005, Vol. 26 ›› Issue (S1): 25-30.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Complexity of shear band patterns and discreteness of stress-strain curves

WANG Xue-bin   

  1. Department of Mechanics and Engineering Sciences, Liaoning Technical University, Fuxin 123000, China
  • Received:2005-01-04 Published:2005-12-15

Abstract: Effects of positions of material imperfection at right edge of rock specimen under plane strain compression on initiation and evolution of shear bands as well as stress-strain curves of rock specimen were modeled numerically by FLAC. Two material imperfections were introduced in the form of null element at left and right edges of specimen, respectively. The material imperfection at left edge was fixed; however, the positions of material imperfection at right edge were different for different schemes. The adopted failure criterion was a composite Mohr-Coulomb criterion with tension cut-off and post-peak constitutive relation of rock was linear strain-softening. Only one shear band bisecting specimen through two imperfections is formed and only full development of shear band below right material imperfection is permitted due to end restraint at top of specimen when right imperfection is close to the top. When right imperfection is not close to the top, shear bands are initiated in the vicinity of material imperfections and propagate along their inherent directions so that patterns of shear bands are very complex. Stress-strain curve beyond the peak strength exhibits steeper behavior when the number of shear bands intersecting specimen is lower. Otherwise, strain-softening branch of stress-strain curve undergoes ductile behavior. In the process of shear band propagation, when the tip of shear band head-on approaches two triangular regions affected by strong restraint at top or base of specimen, direction of shear band has to be changed. If the tip is very closer to the symmetrical line in vertical direction of specimen, direction of shear band will be slightly changed (the phenomenon is called shear band refraction). However, if the tip is not very closer to the symmetrical line, the direction will be changed greatly (the phenomenon is called shear band reflection).

Key words: rock mechanics, shear band, material imperfection, stress-strain curve, end restraint, ductile shear failure, brittle shear failure

CLC Number: 

  • TU 451
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] TIAN Jun, LU Gao-ming, FENG Xia-ting, LI Yuan-hui, ZHANG Xi-wei. Experimental study of the microwave sensitivity of main rock-forming minerals [J]. Rock and Soil Mechanics, 2019, 40(6): 2066-2074.
[2] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A nonlinear creep model of rock based on the strain softening index [J]. Rock and Soil Mechanics, 2019, 40(6): 2239-2246.
[3] FU Long-long, ZHOU Shun-hua, TIAN Zhi-yao, TIAN Zhe-kan, . Force chain evolution in granular materials during biaxial compression [J]. Rock and Soil Mechanics, 2019, 40(6): 2427-2434.
[4] SU Guo-shao, YAN Si-zhou, YAN Zhao-fu, ZHAI Shao-bin, YAN Liu-bin, . Evolution characteristics of acoustic emission in rockburst process under true-triaxial loading conditions [J]. Rock and Soil Mechanics, 2019, 40(5): 1673-1682.
[5] WANG Yu, AI Qian, LI Jian-lin, DENG Hua-feng, . Damage characteristics of sandstone under different influence factors and its unloading failure meso-morphology properties [J]. Rock and Soil Mechanics, 2019, 40(4): 1341-1350.
[6] WANG Juan-juan, HAO Yan-zhou, WANG Tie-hang. Experimental study of structural characteristics of unsaturated compacted loess [J]. Rock and Soil Mechanics, 2019, 40(4): 1351-1357.
[7] LI Xiao-zhao, QI Cheng-zhi, SHAO Zhu-shan, QU Xiao-lei, . Micromechanics-based model study of shear properties of brittle rocks [J]. Rock and Soil Mechanics, 2019, 40(4): 1358-1367.
[8] CHEN Wei-zhong, LI Fan-fan, MA Yong-shang, LEI Jiang, YU Hong-dan, XING Tian-hai, ZHENG You-lei, JIA Xiao-dong, . Development of a parallel-linkage triaxial testing machine for THM coupling in soft rock [J]. Rock and Soil Mechanics, 2019, 40(3): 1213-1220.
[9] ZHENG Guang-hui, XU Jin-yu, WANG Peng, FANG Xin-yu, WANG Pei-xi, WEN Ming, . Physical characteristics and degradation model of stratified sandstone under freeze-thaw cycling [J]. Rock and Soil Mechanics, 2019, 40(2): 632-641.
[10] SONG Hong-qiang, ZUO Jian-ping, CHEN Yan, LI Li-yun, HONG Zi-jie, . Revised energy drop coefficient based on energy characteristics in whole process of rock failure [J]. Rock and Soil Mechanics, 2019, 40(1): 91-98.
[11] FANG Xiang-wei, LI Jing-xin, LI Jie, SHEN Chun-ni,. Study of triaxial compression test and damage constitutive model of biocemented coral sand columns [J]. , 2018, 39(S1): 1-8.
[12] HUANG Zheng-hong, DENG Shou-chun, LI Hai-bo, YU Chong,. Tensile tests on plate specimens with bilateral asymmetric cracks [J]. , 2018, 39(S1): 267-274.
[13] ZUO Yu-jun, SUN Wen-ji-bin, WU Zhong-hu, XU Yun-fei, . Experiment on permeability of shale under osmotic pressure and stress coupling [J]. , 2018, 39(9): 3253-3260.
[14] CHEN Dun, MA Wei, WANG Da-yan, MU Yan-hu, LEI Le-le,WANG Yong-tao, ZHOU Zhi-wei, CAI Cong, . Experimental study of deformation characteristics of frozen clay under directional shear stress path [J]. , 2018, 39(7): 2483-2490.
[15] XIE Xue-bin, DENG Rong-ning, DONG Xian-jiu, YAN Ze-zheng,. Stability of goaf group system based on catastrophe theory and rheological theory [J]. , 2018, 39(6): 1963-1972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TAO Gan-qiang, YANG Shi-jiao, REN Feng-yu. Experimental research on granular flow characters of caved ore and rock[J]. , 2009, 30(10): 2950 -2954 .
[2] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[3] GONG Wei-li, AN Li-qian, ZHAO Hai-yan, MAO Ling-tao. Multiple scale characterization of CT image for coal rock fractures based on image description[J]. , 2010, 31(2): 371 -376 .
[4] ZHAN Yong-xiang, JIANG Guan-lu. Study of dynamic characteristics of soil subgrade bed for ballastless track[J]. , 2010, 31(2): 392 -396 .
[5] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[6] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[7] TAN Feng-yi, Jiang Zhi-quan, Li Zhong-qiu, YAN Hui-he. Application of additive mass method to testing compacted density of filling material in Kunming new airport[J]. , 2010, 31(7): 2214 -2218 .
[8] CHAI Bo, YIN Kun-long, XIAO Yong-jun. Characteristics of weak-soft zones of Three Gorges Reservoir shoreline slope in new Badong county[J]. , 2010, 31(8): 2501 -2506 .
[9] ZHANG Jian-min,WANG Fu-qiang. Post-liquefaction flow failure of saturated dilative sands and its mechanism[J]. , 2010, 31(9): 2711 -2715 .
[10] LIU Han-long,TAO Xue-jun,ZHANG Jian-wei,CHEN Yu-min. Behavior of PCC pile composite foundation under lateral load[J]. , 2010, 31(9): 2716 -2722 .