›› 2018, Vol. 39 ›› Issue (9): 3253-3260.doi: 10.16285/j.rsm.2016.2796

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experiment on permeability of shale under osmotic pressure and stress coupling

ZUO Yu-jun1, 2, 3, 4, SUN Wen-ji-bin1, 2, 3, 4, WU Zhong-hu5, XU Yun-fei1, 2, 3, 4   

  1. 1. Mining College, Guizhou University, Guiyang, Guizhou 550025, China; 2. Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guizhou University, Guiyang, Guizhou 550025, China; 3. Engineering Laboratory for Efficient Utilization of Superior Mineral Resources in Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; 4. Engineering Center for Safe Mining Technology under Complex Geologic Condition, Guizhou University Guiyang, Guizhou 550025, China; 5. College of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China;
  • Received:2016-12-01 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the Key Program of the National Natural Science Foundation of China (51574093, 51774101), the Major Application Foundation Research Project of Guizhou Province(JZ2014-2005), the High Level Innovative Talents Training Project of Guizhou Province(2016-4011) and the Talent Introduction Project of Guizhou University(2017-63).

Abstract: To understand the permeability of shale under osmotic pressure and stress coupling, a servo-controlled triaxial rock testing system was employed to determine the complete strain-stress curves and permeability of shale under different confining pressures and osmotic pressures. The relationships between the deformation stage and permeability of shale samples were analyzed. The relationship between the compression zone and the permeability in the process of shale destruction was discussed. The results show that under different confining pressures, the initial permeability decreases with the increase of confining pressure, and the peak intensity increases with the increase of confining pressure. Under the same confining pressure, the permeability of the samples increases with the increase of the osmotic pressure, but the peak strength decreases to a certain extent. It is found that there is a localised compression zone in the shale, and the compression zone appears to inhibit the increase of permeability. The appearance of the compression zone is not the characteristic of the brittle to the ductile transition critical point, but the characteristics of the initiation, propagation and softening of pores. The shale samples appear hardening under high confining pressure. Under the low confining pressure, the formation of the fracture network in the shale is earlier than the samples under high confining pressure, and the failure mode is mainly dominated by the high-angle shear failure. This study on the permeability of shale under different stress conditions is significant to reveal the percolation mechanism of the process of shale gas development.

Key words: rock mechanics, shale, osmotic pressure and stress coupling, permeability, compression zone

CLC Number: 

  • TU 452

[1] WANG Ke, SHENG Jin-chang, GAO Hui-cai, TIAN Xiao-dan, ZHAN Mei-li, LUO Yu-long, . Study on seepage characteristics of rough crack under coupling of stress-seepage erosion [J]. Rock and Soil Mechanics, 2020, 41(S1): 30-40.
[2] GUI Yue, WU Cheng-kun, ZHAO Zhen-xing, LIU Sheng-jun, LIU Rui, ZHANG Qiu-min. Effects of microbial decomposition of organic matter on engineering properties of peat soil [J]. Rock and Soil Mechanics, 2020, 41(S1): 147-155.
[3] BIAN Kang, CHEN Yan-an, LIU Jian, CUI De-shan, LI Yi-ran, LIANG Wen-di, HAN Xiao. The unloading failure characteristics of shale under different water absorption time using the PFC numerical method [J]. Rock and Soil Mechanics, 2020, 41(S1): 355-367.
[4] HUANG Wei, XIAO Wei-min, TIAN Meng-ting, ZHANG Lin-hao, . Model test research on the mechanical properties of irregular columnar jointed rock masses [J]. Rock and Soil Mechanics, 2020, 41(7): 2349-2359.
[5] SHAO Chang-yue, PAN Peng-zhi, ZHAO De-cai, YAO Tian-bo, MIAO Shu-ting, YU Pei-yang, . Effect of pumping rate on hydraulic fracturing breakdown pressure and pressurization rate [J]. Rock and Soil Mechanics, 2020, 41(7): 2411-2421.
[6] JIANG Chang-bao, WEI Cai, DUAN Min-ke, CHEN Yu-fei, YU Tang, LI Zheng-ke, . Hysteresis effect and damping characteristics of shale under saturated and natural state [J]. Rock and Soil Mechanics, 2020, 41(6): 1799-1808.
[7] LIU Hua, HE Jiang-tao, ZHAO Qian, WANG Tie-hang, GUO Chao-yi, . Experimental study on evolution of micro-permeability characteristics of acid-contaminated undisturbed loess [J]. Rock and Soil Mechanics, 2020, 41(3): 765-772.
[8] LI Hua, LI Tong-lu, JIANG Rui-jun, FAN Jiang-wen. Measurement of unsaturated permeability curve using filter paper method [J]. Rock and Soil Mechanics, 2020, 41(3): 895-904.
[9] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[10] SHENG Jian-long, HAN Yun-fei, YE Zu-yang, CHENG Ai-ping, HUANG Shi-bing, . Relative permeability model for water-air two-phase flow in rough-walled fractures and numerical analysis [J]. Rock and Soil Mechanics, 2020, 41(3): 1048-1055.
[11] MA Qiu-feng, QIN Yue-ping, ZHOU Tian-bai, YANG Xiao-bin. Development and application of contact algorithms for rock shear fracture surface [J]. Rock and Soil Mechanics, 2020, 41(3): 1074-1085.
[12] LI Kang, WANG Wei, YANG Dian-sen, CHEN Wei-zhong, QI Xian-yin , TAN Cai. Application of periodic oscillation method in low permeability measurement [J]. Rock and Soil Mechanics, 2020, 41(3): 1086-1094.
[13] LI Hong-po, CHEN Zheng, FENG Jian-xue, MENG Yu-han, MEI Guo-xiong, . Study on position optimization of horizontal drainage sand blanket of double-layer foundation [J]. Rock and Soil Mechanics, 2020, 41(2): 437-444.
[14] XU Jie, ZHOU Jian, LUO Ling-hui, YU Liang-gui, . Study on anisotropic permeability model for mixed kaolin-montmorillonite clays [J]. Rock and Soil Mechanics, 2020, 41(2): 469-476.
[15] YANG Fu-jian, HU Da-wei, TIAN Zhen-bao, ZHOU Hui, LU Jing-jing, LUO Yu-jie, GUI Shu-qiang, . Evolution and mechanism of permeability of unconsolidated sandstone under high hydrostatic pressure compaction [J]. Rock and Soil Mechanics, 2020, 41(1): 67-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!