›› 2005, Vol. 26 ›› Issue (S1): 57-60.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study on cement-soil strength in mucky-acid soil

JIAO Zhi-bin12, LIU Han-long1, GAI Zheng-yin2   

  1. 1. Research Institute of Geotechnical Engineering, Hohai University, Nanjing 210098, China; 2. Nanjing Hydraulic Research Institute, Nanjing 210024, China
  • Received:2005-01-31 Published:2005-12-15

Abstract: Testing method is adopted in the codes when the foundation in mucky-acid soil is stabilized by cememt deep mixing method. Based on the test of cement-soil strength test for Yingtian River Project by deep cement mixing method, this paper analyzed the influencing factors of cement-soil strength and took improved measures to solve it. The test results and practice show that the cement-soil strength is increased by high grade cement and admixture.

Key words: cement deep mixing pile, mucky soil, cement-soil, admixture, unconfined compressive strength, bearing capacity of composite foundation

CLC Number: 

  • TU472
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] ZHANG Ting-ting, WANG Ping, LI Jiang-shan, WAN Yong, XUE Qiang, WANG Shi-quan, . Effect of curing time and lead concentration on mechanical properties of lead-contaminated soils stabilized by magnesium phosphate cement [J]. , 2018, 39(6): 2115-2123.
[2] MA Qin-yong, GAO Chang-hui,. Energy absorption and fractal characteristics of basalt fiber-reinforced cement- soil under impact loads [J]. , 2018, 39(11): 3921-3928.
[3] ZHANG Ding-wen, XIANG Lian, CAO Zhi-guo, . Effect of CaO on ettringite stabilization/solidification of lead-contaminated soil [J]. , 2018, 39(1): 29-35.
[4] LIU Jin-ming, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, YANG Kang-hui. Early strength of stabilized soil affected by functional components [J]. , 2017, 38(3): 755-761.
[5] DENG You-sheng, WU Peng, ZHAO Ming-hua, DUAN Bang-zheng,. Strength of expansive soil reinforced by polypropylene fiber under optimal water content [J]. , 2017, 38(2): 349-353.
[6] SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, WANG Cheng-cheng, . Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation [J]. , 2017, 38(11): 3225-3230.
[7] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, HUANG Qian, XUE Qiang. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils [J]. , 2016, 37(S2): 279-286.
[8] CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand [J]. , 2016, 37(S2): 397-402.
[9] LIU Fei-yu , WANG Pan, WANG Jun, HU Xiu-qing, CAI Yuan-qiang,. Experimental research on reinforcement-soil interface stiffness and damping ratio under cyclic shearing [J]. , 2016, 37(S1): 159-165.
[10] ZHANG Ting-ting, LI Jiang-shan, WANG Ping, LI Zhen-ze. Experimental study of stress-strain properties of lead-contaminated soils treated by magnesium phosphate cement [J]. , 2016, 37(S1): 215-225.
[11] SONG Xin-jiang , XU Hai-bo, ZHOU Wen-yuan, WANG Wei,. True triaxial test on stress-strain characteristics of cement-soil [J]. , 2016, 37(9): 2489-2495.
[12] YANG Kang-hui, OU Zhong-wen, XIAO Han-bing, MO Jin-chuan, LIU Jin-ming. Mechanism analysis and effect of cementitious capillary crystalline waterproofing materials on sulfur aluminate cement solidified soil [J]. , 2016, 37(2): 477-486.
[13] LIU Lu SHEN Yang LIU Han-long CHU Jian ,. Application of bio-cement in erosion control of levees [J]. , 2016, 37(12): 3410-3416.
[14] TAN Yun-zhi , HU Mo-zhen , YANG Ai-wu , WU Pian,. Brine erosion effect on strength of cement improved soils and its numerical simulation [J]. , 2015, 36(S2): 492-498.
[15] CUI Ming-juan, ZHENG Jun-jie, ZHANG Rong-jun, MIAO Chen-xi, ZHANG Jun-jie. Study of effect of chemical treatment on strength of bio-cemented sand [J]. , 2015, 36(S1): 392-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MI Hai-zhen, GAO Chun. Experimental study of expansive behaviors of quicklime[J]. , 2010, 31(4): 1253 -1256 .
[2] HE Xian-long, ZHAO Li-zhen. Analysis of shear wave velocity based on multiple cross-correlation functions[J]. , 2010, 31(8): 2541 -2545 .
[3] CHEN Guo-xing, ZUO Xi, DU Xiu-li. A simplified method of seismic response analysis of soil-underground structure system[J]. , 2010, 31(S1): 1 -7 .
[4] YAN Chang-bin. Blasting damage cumulative effect of rock mass based on sound velocity variation[J]. , 2010, 31(S1): 187 -192 .
[5] QIN Hui-lai, HUANG Mao-song, WANG Yu-jie. Application of Monte Carlo search technique to bearing capacity calculations by upper bound method[J]. , 2010, 31(10): 3145 -3150 .
[6] SUN Xi-ping, ZHANG Bao-hua, ZHANG Qiang, WANG Xiao-nan. Stability analysis of gravity quay when rubble bedding was eroded by water flow[J]. , 2010, 31(10): 3184 -3190 .
[7] ZHANG Lu-ming, ZHENG Ming-xin, HE Min. Study of characteristics of matric suction in landslide slip soils before and after landslide control[J]. , 2010, 31(10): 3305 -3312 .
[8] ZHAN Chuan-ni, WANG Chen, HE Chang-rong. Effects of strain rate on gravelly soil under undrained condition[J]. , 2011, 32(S1): 428 -0432 .
[9] MENG Fan-bing , LIN Cong-mou , CAI li-guang , LI bo. Cumulative damage evaluation of clip rock in small-distance tunnels caused by blasting excavation and its application[J]. , 2011, 32(5): 1491 -1494 .
[10] CUI Wei, SONG Hui-fang, ZHANG She-rong, YAN Shu-wang. Numerical simulation of craters produced by explosion in soil[J]. , 2011, 32(8): 2523 -2528 .