›› 2017, Vol. 38 ›› Issue (11): 3225-3230.doi: 10.16285/j.rsm.2017.11.018

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Experimental study of solidifying sand using microbial-induced calcium carbonate precipitation

SUN Xiao-hao1, 2, MIAO Lin-chang1, 2, TONG Tian-zhi1, 2, WANG Cheng-cheng1, 2   

  1. 1. School of Transportation, Southeast University Nanjing, Jiangsu 210096, China; 2. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2016-12-05 Online:2017-11-10 Published:2018-06-05
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51578147).

Abstract: Sand solidification is to increase the strength of sands and decrease infiltration. Culture medium was used to cultivate bacteria, and growth properties were obtained in various conditions. The relationship between pH and Ca2+ concentration of effluent was analyzed to reveal the evolution of permeability and unconfined compressive strength. Effect of solidification was investigated through microstructure. The relationship between Ca2+ concentration and strength of samples was studied. 2 mL of the bacterial mother liquor was added to 100 mL of the culture medium. The results show that the sporosarcina pasteurii possess optimal growth conditions under a pH of 6 and vibration velocity of 150 rpm with 30oC incubation. pH decreases during curing, and Ca2+ concentration increases. The 0.5 mol/L gel solution shows good curing effect and requires short time of the curing cycle. The gaps between sand particles are filled by calcium carbonate after curing, reducing sample permeability up to 3-4 order of magnitudes. The lower the rate of injection produces longer the curing time and the better the effect of solidification. The failure mode of all specimens is the brittle fracture mode. When the gelling solution is a mixture of urea and calcium acetate, the utilization ratio of Ca2+ is dramatically increased.

Key words: sand solidification, sporosarcina pasteurii, calcium carbonate, unconfined compressive strength, microstructure

CLC Number: 

  • TU 443

[1] ZHAO Yi-qing, WU Chang-gui, JIN Ai-bing, SUN Hao, . Experimental study of sandstone microstructure and mechanical properties under high temperature [J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240.
[2] ZHU Nan, LIU Chun-yuan, ZHAO Xian-hui, WANG Wen-jing, . Micro-structure characteristics of structured clay under different stress paths in K0 consolidated drained tests [J]. Rock and Soil Mechanics, 2020, 41(6): 1899-1910.
[3] LI Min, MENG De-jiao, YAO Xin-yu, . Optimization of requirement for two kinds of ash solidified materials used in oil contaminated saline soil considering temperature sensitivity [J]. Rock and Soil Mechanics, 2020, 41(4): 1203-1210.
[4] DU Yu-xiang, SHENG Qian, WANG Shuai, FU Xiao-dong, LUO Hong-xing, TIAN Ming, WANG Li-wei, MEI Hong-ru. Study of microstructure and mechanical properties of semi-diagenetic rock of Xigeda Formation [J]. Rock and Soil Mechanics, 2020, 41(4): 1247-1258.
[5] CHEN Run-fa, MIAO Lin-chang, SUN Xiao-hao, WU Lin-yu, WANG Cheng-cheng. Quantitative analysis of alumina addition on microbial remediation of concrete cracks [J]. Rock and Soil Mechanics, 2020, 41(3): 933-938.
[6] ZHANG Shan-kai, LENG Xian-lun, SHENG Qian, . Study of water swelling and softening characteristics of expansive rock [J]. Rock and Soil Mechanics, 2020, 41(2): 561-570.
[7] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[8] LEI Hua-yang, HU Yao, LEI Shuang-hua, QI Zi-yang, XU Ying-gang, . Analysis of microstructure characteristics of air-booster vacuum preloading for ultra-soft dredger fills [J]. Rock and Soil Mechanics, 2019, 40(S1): 32-40.
[9] GAO Yun-chang, GAO Meng, YIN Shi, . Experiments on static characteristics of sea sand solidified by polyurethane [J]. Rock and Soil Mechanics, 2019, 40(S1): 231-236.
[10] ZHAO Bo, ZHANG Guang-qing, TANG Mei-rong, ZHUANG Jian-man, LIN Can-kun, . Mechanism of the effect of long-term water injection on mechanical properties of tight sandstone [J]. Rock and Soil Mechanics, 2019, 40(9): 3344-3350.
[11] DENG Hua-feng, ZHI Yong-yan, DUAN Ling-ling, PAN Deng, LI Jian-lin. Mechanical properties of sandstone and damage evolution of microstructure under water-rock interaction [J]. Rock and Soil Mechanics, 2019, 40(9): 3447-3456.
[12] SHEN Tai-yu, WANG Shi-ji, XUE Le, LI Xian, HE Bing-hui, . An experimental study of sandy clayey purple soil enhanced through microbial-induced calcite precipitation [J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124.
[13] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, CHEN Li, . Quantitative microstructure information extraction and microscopic morphology analysis of anisotropic schist [J]. Rock and Soil Mechanics, 2019, 40(7): 2617-2627.
[14] YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, WANG Yan-chao, . Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221-2230.
[15] JIANG Qiang-qiang, LIU Lu-lu, JIAO Yu-yong, WANG Hao, . Strength properties and microstructure characteristics of slip zone soil subjected to wetting-drying cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 1005-1012.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!