›› 2006, Vol. 27 ›› Issue (S1): 443-448.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Study on feedback analysis method for stability of surrounding rock in underground engineering

FU Zhihao,XIAO Ming   

  1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
  • Received:2006-05-25 Published:2006-12-15

Abstract: Feedback analysis technology has been widely applied to underground engineering, and how to analyze the measured data efficiently is a hot topic to engineers. In this paper, two kinds of methods to study the data are discussed. One is to analyze the relationship between measured data and rock mass structures theoretically; the other is using statistics to get information of the numerical characters from measured data. According to the information got before, adopting variable metric method and FEM, the stability and deformation of the surrounding rock can be forecasted. Applying the methods mentioned above to the practical engineering, the predicted results preferably reflect the behavior of the surrounding rock’s deformation as going on of the power cavern excavation. Then an efficient method is provided for the design and construction of underground caverns.

Key words: underground engineering, feedback analysis, constrution monitoring, finite element method

CLC Number: 

  • TV 692
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] WANG Xiang-nan, LI Quan-ming, YU Yu-zhen, YU Jia-lin, LÜ He, . Simulation of the failure process of landslides based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(6): 2435-2442.
[2] QIU Min, YUAN Qing, LI Chang-jun, XIAO Chao-chao, . Comparative study of calculation methods for undrained shear strength of clay based on cavity expansion theory [J]. Rock and Soil Mechanics, 2019, 40(3): 1059-1066.
[3] ZHENG An-xing, LUO Xian-qi, CHEN Zhen-hua, . Hydraulic fracturing coupling model of rock mass based on extended finite element method [J]. Rock and Soil Mechanics, 2019, 40(2): 799-808.
[4] HU Shuai-wei, CHEN Shi-hai, . Analytical solution of dynamic response of rock bolt under blasting vibration [J]. Rock and Soil Mechanics, 2019, 40(1): 281-287.
[5] DONG Zhi-hong, NIU Xin-qiang, DING Xiu-li, WENG YongHong, HUANG Shu-ling, PEI Qi-tao, ZHANG Lian, . Deformation characteristics and feedback analysis of surrounding rock of underground powerhouse at left bank of Wudongde Hydropower Station [J]. Rock and Soil Mechanics, 2018, 39(S2): 326-336.
[6] SONG Jia, GU Quan, XU Cheng-shun, DU Xiu-li,. Implementation of fully explicit method for dynamic equation of saturated soil in OpenSees [J]. , 2018, 39(9): 3477-3485.
[7] SONG Jia, DU Xiu-li, XU Cheng-shun, SUN Bao-yin,. Research on the dynamic responses of saturated porous media-pile foundation-superstructure system [J]. , 2018, 39(8): 3061-3070.
[8] LI Ning, GUO Shuang-feng, YAO Xian-chun,. Further study of stability analysis methods of high rock slopes [J]. , 2018, 39(2): 397-406.
[9] LUO Xian-qi, ZHENG An-xing,. Application of extended finite element method in modelling fracture of rock mass [J]. , 2018, 39(2): 728-734.
[10] LIU Zhong-yu, ZHANG Jia-chao, ZHENG Zhan-lei, GUAN Cong. Finite element analysis of two-dimensional Biot’s consolidation with Hansbo’s flow [J]. Rock and Soil Mechanics, 2018, 39(12): 4617-4626.
[11] LIU Zhen-ping, DU Gen-ming, CAI Jie, ZHOU Fan, LIU Jian, BIAN Kang,. Seamless coupling method of 3DGIS combined with 3DFEM simulation based on MeshPy [J]. , 2018, 39(10): 3841-3852.
[12] TU Yi-liang, LIU Xin-rong, ZHONG Zu-liang, DU Li-bing, WANG Peng, . The unity of three types of slope failure criteria [J]. , 2018, 39(1): 173-180.
[13] ZOU De-gao, LIU Suo, CHEN Kai, KONG Xian-jing, YU Xiang,. Static and dynamic analysis of seismic response nonlinearity for geotechnical engineering using quadtree mesh and polygon scaled boundary finite element method [J]. , 2017, 38(S2): 33-40.
[14] HE Wei-jie, YANG Dong-ying, CUI Zhou-fei. Comparison of theoretical and numerical solution for vertical vibration of a pile considering transverse inertia effect [J]. , 2017, 38(9): 2757-2763.
[15] LUO Tao, E. T. Ooi, A. H. C Chan, FU Shao-jun,. A combined DEM-SBFEM for modelling particle breakage of rock-fill materials [J]. , 2017, 38(5): 1463-1471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MEI Guo-xiong, LU Ting-hao, CHEN Hao, LI Zhi. True triaxial experiment of foundation pit considering initial stress[J]. , 2010, 31(7): 2079 -2082 .
[2] ZHAO Jia-xi, QI Hui, YANG Zai-lin. Scattering of SH-waves by a shallow buried cylindrical inclusion with a partially debonded curve in half space[J]. , 2009, 30(5): 1297 -1302 .
[3] NIU Wen-jie,YE Wei-min,LIU Shao-gang,YU Hai-tao. Limit analysis of a soil slope considering saturated-unsaturated seepage[J]. , 2009, 30(8): 2477 -2482 .
[4] SUN Yi-zhen, SHAO Long-tan, FAN Zhi-qiang, TIAN Si-lei. Experimental research on Poisson’s ratio of sandy soil[J]. , 2009, 30(S1): 63 -68 .
[5] LU Xiao-bing , ZHANG Xu-hui , CUI Peng. Numerical simulation of clastic grain flow along a slope[J]. , 2009, 30(S2): 524 -527 .
[6] DAI Guo-liang, ZHOU Xiang-qin, LIU Yun-zhong, LIU Li-ji, GONG Wei-ming. Model test research on horizontal bearing capacity of closed diaphragm wall[J]. , 2011, 32(S2): 185 -189 .
[7] CHEN Shi-hai , YAN Yong-feng , QI Gui-feng , ZHANG Xian-kun , ZHANG Wei. Analysis of influence factors of interference vibration reduction of millisecond blasting[J]. , 2011, 32(10): 3003 -3008 .
[8] CHEN Chang-fu ,CHENG Xiao-wei. Time-varying reliability analysis of anchor system of rock slopes with double slide blocks[J]. , 2012, 33(1): 197 -203 .
[9] CAI Jian . Study of shear strength for intact soil[J]. , 2012, 33(7): 1965 -1971 .
[10] ZHOU Bo ,WANG Hua-bin ,ZHAO Wen-feng ,LI Ji-wei ,ZHENG Bi-can . Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. , 2012, 33(10): 3171 -3178 .