›› 2017, Vol. 38 ›› Issue (5): 1463-1471.doi: 10.16285/j.rsm.2017.05.029

• Numerical Analysis • Previous Articles     Next Articles

A combined DEM-SBFEM for modelling particle breakage of rock-fill materials

LUO Tao1, 2, E. T. Ooi2, A. H. C Chan3, FU Shao-jun1   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China; 2. Faculty of Science and Technology, Federation University Australia, Ballarat, Australia; 3. School of Engineering, Information and Communication Technology, University of Tasmania, Hobart, Australia
  • Received:2016-07-12 Online:2017-05-11 Published:2018-06-05

Abstract: Both experimental and numerical results demonstrate that particle breakage has significant influence on the macro mechanical response of granular soils. In this study, a novel computational method was proposed to simulate particle breakage phenomenon in granular soils. The proposed method based on the discrete element method (DEM) and the scaled boundary finite element method (SBFEM) has advantages of each method. Individual grains of soil are modelled by a single star-convex polygon with an arbitrary number of sides. The DEM is used to determine the motion of particles and the interaction among particles, whereas the SBFEM is applied to obtain stress states of grains at the end of each time step. Since the SBFEM flexibly describes the morphology of each grain with a single polygon consisting of an arbitrary number of sides, it greatly reduces the necessary computational resources for stress analysis. When the stress state has been confirmed, Hoek-Brown criterion is chosen to determine the ‘plastic points’ within each particle. Once the ratio of ‘plastic points’ reaches a predefined threshold, the particle breakage is triggered. As a straight breakage line is assumed for simplification, the particle is split into two when breakage occurs. The newly generated polygons are directly modelled by the DEM and SBFEM without any change of the formulation, and thus this method does not need to predefine sub-particles and re-meshing elements. At last, the feasibility of the newly developed method is verified by a biaxial benchmark test.

Key words: rock-fill materials, discrete element method, scaled boundary finite element method, particle breakage, Hoek-Brown criterion, biaxial test

CLC Number: 

  • TU 411

[1] BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment [J]. Rock and Soil Mechanics, 2020, 41(S1): 347-354.
[2] GAO Wei, HU Cheng-jie, HE Tian-yang, CHEN Xin, ZHOU Cong, CUI Shuang, . Study on constitutive model of fractured rock mass based on statistical strength theory [J]. Rock and Soil Mechanics, 2020, 41(7): 2179-2188.
[3] YANG Ji-ming, ZHANG Xiao-yong, ZHANG Fu-you, ZENG Chao-feng, MEI Guo-xiong, . Mesoscopic study on bearing characteristics of pile foundation under pile-soil-cap combined interaction in sand [J]. Rock and Soil Mechanics, 2020, 41(7): 2271-2282.
[4] MAO Hao-yu, XU Nu-wen, LI Biao, FAN Yi-lin, WU Jia-yao, MENG Guo-tao, . Stability analysis of an underground powerhouse on the left bank of the Baihetan hydropower station based on discrete element simulation and microseismic monitoring [J]. Rock and Soil Mechanics, 2020, 41(7): 2470-2484.
[5] XU Dong-sheng, HUANG Ming, HUANG Fo-guang, CHEN Cheng. Failure behavior of cemented coral sand with different gradations [J]. Rock and Soil Mechanics, 2020, 41(5): 1531-1539.
[6] CHU Fu-yong, ZHU Jun-gao, WENG Hou-yang, YE Yang-fan. Experimental study on maximum dry density of scaled coarse-grained soil [J]. Rock and Soil Mechanics, 2020, 41(5): 1599-1604.
[7] WU Qi-xin, YANG Zhong-xuan. Incremental behavior of granular soils: a strain response envelope perspective [J]. Rock and Soil Mechanics, 2020, 41(3): 915-922.
[8] JIN Jun-chao, SHE Cheng-xue, SHANG Peng-yang. A strain-softening model of rock based on Hoek-Brown criterion [J]. Rock and Soil Mechanics, 2020, 41(3): 939-951.
[9] LI Xiao-gang, ZHU Chang-qi, CUI Xiang, ZHANG Po-yu, WANG Rui, . Experimental study of triaxial shear characteristics of carbonate mixed sand [J]. Rock and Soil Mechanics, 2020, 41(1): 123-131.
[10] KUANG Du-min, LONG Zhi-lin, ZHOU Yi-chun, YAN Chao-ping, CHEN Jia-min, . Prediction of rate-dependent behaviors of cemented geo-materials based on BP neural network [J]. Rock and Soil Mechanics, 2019, 40(S1): 390-399.
[11] ZHANG Ling-kai, WANG Rui, ZHANG Jian-min, TANG Xin-jun, . A static and dynamic constitutive model of rockfill material considering particle breakage [J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554.
[12] PENG Yu, DING Xuan-ming, XIAO Yang, CHU Jian, DENG Wei-ting, . Study of particle breakage behaviour of calcareous sand by dyeing tracking and particle image segmentation method [J]. Rock and Soil Mechanics, 2019, 40(7): 2663-2672.
[13] ZHANG Hai-ting, YANG Lin-qing, GUO Fang, . Solution and analysis of dynamic response for rigid buried pipe in multi-layered soil based on SBFEM [J]. Rock and Soil Mechanics, 2019, 40(7): 2713-2722.
[14] MU Rui, PU Shao-yun, HUANG Zhi-hong, LI Yong-hui, ZHENG Pei-xin, LIU Yang, LIU Ze, ZHENG Hong-chao, . Determination of ultimate bearing capacity of uplift piles in combined soil and rock masses [J]. Rock and Soil Mechanics, 2019, 40(7): 2825-2837.
[15] KONG Xian-jing, NING Fan-wei, LIU Jing-mao, ZOU De-gao, ZHOU Chen-guang, . Influences of stress paths and saturation on particle breakage of rockfill materials [J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!