›› 2006, Vol. 27 ›› Issue (S1): 483-486.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Prediction for influence of tunneling on adjacent pipelines

WANG Tao1,WEI Gang2,XU Ri-qing1   

  1. 1. Institute of Geotechnical Engineering,Zhejiang University, Hangzhou 310027, China; 2. Department of Civil Engineering, City College of Zhejiang University, Hangzhou 310015, China
  • Received:2006-04-28 Published:2006-12-15

Abstract: The tunnel excavation generates soil settlement around the pipeline, and causes the pipeline to deform and suffer bending moment. The Loganathan’s formula is used for predicting the soil displacement at the pipeline level; and the equivalent model of the forces acting on the pipeline is given. A Winkler solution is used for estimating the bending moment for the pipeline affected by tunneling. A case is analyzed; and the solution is compared with an elastic continuum solution and Attwell’s solution. The results show that the method is valid.

Key words: tunneling, buried pipelines, Winkler-based model, bending moment of the pipeline

CLC Number: 

  • U 45
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[2] LI Hai-li, ZHANG Chen-rong, LU Kai,. Nonlinear analysis of response of buried pipelines induced by tunneling [J]. , 2018, 39(S1): 289-296.
[3] WU Shun-chuan, HAN Wei, CHEN Fan, XU Miao-fei, CONG Zi-jie,. Optimisation of buffer layer thickness in gypsum rock tunnel based on swelling constitutive model [J]. , 2018, 39(4): 1182-1191.
[4] HUANG Xiao-kang, LU Kun-lin, ZHU Da-yong,. Simulation test study of deformations of pipelines located at different geometric positions arising from shield tunneling [J]. , 2017, 38(S1): 123-130.
[5] ZHANG Xiao-qing, ZHANG Meng-xi, LI Lin, LI Wu-xiang, WANG You-cheng,. Mechanism of approaching construction disturbance caused by multi-line overlapped shield tunnelling [J]. , 2017, 38(4): 1133-1140.
[6] LIU Zhen-ping, LIU Jian, HE Yu-wei, HE Huai-jian, BIAN Kang,. Seamless coupling of 3D GIS techniques with FEM and its application to tunneling engineering [J]. , 2017, 38(3): 866-874.
[7] SUN Xiao-hao, MIAO Lin-chang, LIN Hai-shan. Arching effect of soil ahead of working face in shield tunnel in sand with various depths [J]. , 2017, 38(10): 2980-2988.
[8] ZHU Cai-hui, LI Ning. Estimation method and laws analysis of surface settlement due to tunneling [J]. , 2016, 37(S2): 533-542.
[9] ZHANG Qiong-fang, XIA Tang-dai, DING Zhi, HUANG Xiao-bin, LIN Cun-gang,. Effect of nearby undercrossing tunneling on the deformation of existing metro tunnel and construction control [J]. , 2016, 37(12): 3561-3568.
[10] CHEN Ren-peng , YIN Xin-sheng , TANG Lü-jun , CHEN Yun-min , . Centrifugal model tests of tunneling face failure under seepage flow [J]. , 2015, 36(S1): 225-229.
[11] JIN Jun-wei , YANG Min , DENG You-sheng , LIU Chen-hui , . Simplified calculating method for evaluating effect of tunneling in sands on axial force of nearby piles [J]. , 2015, 36(S1): 241-246.
[12] ZHANG De-hua ,LIU Shi-hai ,REN Shao-qiang,. Experimental study of effects of strength increase and hardening rate of shotcrete on its early supporting performances in tunneling [J]. , 2015, 36(6): 1707-1713.
[13] SHA Peng , WU Fa-quan , LI Xiang , LIANG Ning , CHANG Jin-yuan,. Squeezing deformation in layered surrounding rock and force characteristics of support system of a tunnel under high in-situ stress [J]. , 2015, 36(5): 1407-1414.
[14] WU Shun-chuan ,GENG Xiao-jie ,GAO Yong-tao ,ZHAO Guo-jun ,LI Jian ,YAN Qiong,. A study of the longitudinal deformation of tunnels based on the generalized Hoek-Brown failure criterion [J]. , 2015, 36(4): 946-952.
[15] ZHAO Zhi-tao ,LIU Jun ,WANG Ting ,LIU Ji-yao,. Relationship between the surface subsidence and the pipeline displacement induced by metro tunnel construction [J]. , 2015, 36(4): 1159-1166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao,TANG Hui-ming,LIU Yu. A new model for landslide displacement prediction based on set pair analysis and fuzzy-Markov chain[J]. , 2009, 30(11): 3399 -3405 .
[2] HU Da-wei, ZHOU Hui, XIE Shou-yi, ZHANG Kai, SHAO Jian-fu, FENG. Study of Biot’s coefficients of marble during plastic deformation phase[J]. , 2009, 30(12): 3727 -3732 .
[3] ZHANG Fu-hai,WANG Bao-tian,LIU Han-long. Research on deformation disciplines of compacted expansive soils[J]. , 2010, 31(1): 206 -210 .
[4] LIU Jun-yan,LIU Yan,WANG Hai-ping. Design of removing diagonal brace in sub region considering coordinating role of space support systems[J]. , 2010, 31(9): 2854 -2860 .
[5] ZHU Jian-ming,PENG Xin-po,YAO Yang-ping,XU Jin-hai. Application of SMP failure criterion to computing limit strength of coal pillars[J]. , 2010, 31(9): 2987 -2990 .
[6] LI Zhan-hai,ZHU Wan-cheng,FENG Xia-ting,LI Shao-jun,ZHOU Hui,CHEN Bing-rui. Effect of lateral pressure coefficients on damage and failure process of horseshoe-shaped tunnel[J]. , 2010, 31(S2): 434 -441 .
[7] JIN Jie-fang , LI Xi-bing , YIN Zhi-qiang , ZOU Yang. A method for defining rock damage variable by wave impedance under cyclic impact loadings[J]. , 2011, 32(5): 1385 -1393 .
[8] ZHOU Yan-jun , GENG Ying-chun , WANG Gui-bin , TANG Hong-lin , LI Zu-kui. Testing and analyzing rock mechanical characteristics for deep formation[J]. , 2011, 32(6): 1625 -1630 .
[9] WANG Yu-lin ,XIE Kang-he ,WANG Kun ,LI Chuan-xun ,HUANG Da-zhong. Influence of nonuniform skin effect on steady radial flow in anisotropic confined aquifer[J]. , 2011, 32(7): 2133 -2138 .
[10] GUO Wen-jing MA Shao-peng KANG Yong-jun MA Qin-wei. Virtual extensometer based on digital speckle correlation method and its application to deformation field evolution of rock specimen[J]. , 2011, 32(10): 3196 -3200 .