›› 2006, Vol. 27 ›› Issue (S1): 611-614.

• Fundamental Theroy and Experimental Research • Previous Articles     Next Articles

Research on properties of subgrade built with weathered mica gneiss

YAO Zhan-yong1, LIAN Ji-jian1, ZHANG Xi-bin2, FANG Jian-guo2   

  1. 1.Tianjin University, Tianjin 300192, China; 2.Shandong Provincial Highway Administration, Jinan 250061, China
  • Received:2006-05-18 Published:2006-12-15

Abstract: Through the laboratory experiment, the compaction performance, water stability, CBR of the weathered mica gneiss have been studied. Because of the high elasticity and extremely smooth surface, mica sheets cause the low ability of inlay and anti-cuts. It is easy for the surface layer of the subgrade to peel, loose and to rebound. Then the water stability is bad, the intensity is somewhat low, and the CBR value cannot achieve the intensity standard of the roadbed in the highway. Increasing the work of tamping, the compaction performance of the material cannot be improved obviously. For the construction of the bed, the static pressure is suitable avoiding dynamic pressure. The compaction performance of the material may be obviously improved; and the intensity of the material may be enhanced after improving it with the clay, the weathered soil or the cement. The reasonable admixture dosage of the modified material can be proposed from the engineering economic aspects.

Key words: subgrade, mica gneiss, weathered material, CBR

CLC Number: 

  • U 416.1
  • Please send e-mail to pingzhou3@126.com if you would like to read full paper in English for free. Parts of our published papers have English translations.
[1] XU Peng, JIANG Guan-lu, REN Shi-jie, TIAN Hong-cheng, WANG Zhi-meng, . Experimental study of dynamic response of subgrade with red mudstone and improved red mudstone [J]. Rock and Soil Mechanics, 2019, 40(2): 678-683.
[2] LI Hai-li, ZHANG Chen-rong, LU Kai,. Nonlinear analysis of response of buried pipelines induced by tunneling [J]. , 2018, 39(S1): 289-296.
[3] WANG Bing-long, MEI Zhen, XIAO Jun-hua. Experimental study of subgrade reinforcement and diseases treatment by geocell [J]. , 2018, 39(S1): 325-332.
[4] YANG Qi, ZHANG You-yi, LIU Hua-qiang, QIN Hua,. Model test on load-failure of a foamed lightweight soil subgrade [J]. , 2018, 39(9): 3121-3129.
[5] MENG Shang-jiu, LI Xiang, SUN Yi-qiang, CHENG You-kun,. In-situ monitoring and analysis of permanent subgrade deformation in seasonally frozen regions [J]. , 2018, 39(4): 1377-1385.
[6] XIONG Yong, LUO Qiang, ZHANG Liang, JIANG Liang-wei, ZHU Jiang-jiang, . Analysis of deformation time effect of silt clay filler in K30 loading process [J]. , 2018, 39(3): 863-871.
[7] SONG Jing, YE Guan-lin, XU Yong-fu, SUN De-an,. Numerical simulation of long-term settlement of structural soft soil subgrade considering consolidation history [J]. , 2018, 39(3): 1037-1046.
[8] RAO Deng-yu, BAI Bing, CHEN Pei-pei, . Simulation of hydro-thermal coupling with phase-change in unsaturated porous media by SPH method [J]. Rock and Soil Mechanics, 2018, 39(12): 4527-4536.
[9] NIU Xi-rong, YAO Yang-ping, CHEN Zhong-da,. The strength and constitutive model of compacted weathered granite soils in Lüliang mountains [J]. , 2017, 38(10): 2833-2840.
[10] YIN Song, KONG Ling-wei, YANG Ai-wu, MU Kun,. Indoor experimental study of road performance of granite residual soil for subgrade filling materials [J]. , 2016, 37(S2): 287-293.
[11] WANG Pei-xin, ZHOU Shun-hua, DI Hong-gui, LI Xue, . Impacts of foundation pit excavation on adjacent railway subgrade and control [J]. , 2016, 37(S1): 469-476.
[12] QIU Ming-ming , YANG Xiao , YANG Guo-lin , FANG Yi-he,. Dynamic response of the new fully-enclosed cutting subgrade of Yun-Gui high-speed railway [J]. , 2016, 37(2): 537-544.
[13] WANG Xiang, JIAO Tan, NIE Zhi-hong, SONG Xiao-dong,. Evaluation of roller-integrated compaction uniformity based on geostatistics [J]. , 2016, 37(12): 3545-3552.
[14] JIANG Ling-fa , XIONG Shu-dan , CHEN Shan-xiong , XU Xi-chang,. Model test study of velocity transfer law of high-speed railway subgrade under train load [J]. , 2015, 36(S1): 265-269.
[15] DENG Zong-wei , PENG Wen-chun , GAO Qian-feng , DONG Hui , ZHU Zhi-xiang,. Base pressure monitoring and flatness analysis for wind turbine spread subgrade [J]. , 2015, 36(9): 2659-2664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Wen-jie,CHEN Yum-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. , 2010, 31(1): 211 -215 .
[2] GAO Guang-yun, ZHAO Yuan-yi, GAO Meng, YANG Cheng-bin. Improved calculation for lateral dynamic impedance of pile groups in layered soil[J]. , 2010, 31(2): 509 -515 .
[3] WANG Ming-nian, GUO Jun, LUO Lu-sen, Yu Yu, Yang Jian-min, Tan Zhon. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. , 2010, 31(4): 1157 -1162 .
[4] LEI Ming-feng, PENG Li-min, SHI Cheng-hua, AN Yong-lin. Research on construction spatial effects in large-long-deep foundation pit[J]. , 2010, 31(5): 1579 -1584 .
[5] HU Yong-gang, LUO Qiang, ZHANG Liang, HUANG Jing, CHEN Ya-mei. Deformation characteristics analysis of slope soft soil foundation treatment with mixed-in-place pile by centrifugal model tests[J]. , 2010, 31(7): 2207 -2213 .
[6] MI Hai-zhen,WANG Hao,GAO Chun,ZHU Hao-wen. Study of immersion strength and residual strength of lime-loess[J]. , 2010, 31(9): 2781 -2785 .
[7] LI Xue-ping,YAO Yun-sheng,WANG Yang,LI Jing-gang. Dynamic risk assessment of induced earthquake risk in head area of Three Gorges Reservoir based on GIS and multi-source information fusion techniques[J]. , 2010, 31(9): 2941 -2945 .
[8] WEN Xiao-gui,ZHANG Xun,ZHOU Jian,GUAN Lin-bo,XIE Xin-yu. Changing mechanism of microstructure of intact soft clay considering anisotropy[J]. , 2011, 32(1): 27 -32 .
[9] LI Min,CHAI Shou-xi,WANG Xiao-yan,WEI Li. Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime[J]. , 2011, 32(4): 1051 -1056 .
[10] ZHANG Jia-lan, WEN Hai-jia, LI Bai-zhan. Reliability assessment of treating site slope of a natural gas storage station[J]. , 2009, 30(S2): 414 -417 .