›› 2014, Vol. 35 ›› Issue (S2): 453-459.

• Geotechnical Engineering • Previous Articles     Next Articles

Study of distribution law of earth pressure acting on shield tunnel lining based on in-situ data

LI Xue,ZHOU Shun-hua,WANG Pei-xin,LI Xiao-long   

  1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2014-03-24 Online:2014-10-31 Published:2014-11-12

Abstract: Based on a series of field monitoring data of earth pressures acting on the shield tunneling segments, the earth pressures for both long-term and construction period are analyzed respectively. The results show that the depth of the ground water level plays an important role on the distribution of earth pressures in the circumferential direction. The earth pressure upon shield tunnel lining will be influenced by the stiffness ratio of ground to lining; the reasonable value of stiffness ratio is 1.5 since the soil reaction acting on segments will be relative smaller. The loads during construction can not be ignored in various strata, the segments are considered to receive larger loads if the backfill grouting pressure or the grouting ratio are larger than design. The earth pressure distribution can be divided into four stages. i.e. segments assemble stage, the backfill grouting stage, grout solidification stage and the stabilization stage. The distribution of earth pressure in the circumferential direction is uneven during construction, the earth pressure in the backfill grouting stage is 2-3 times as much as in the stabilization stage. The insights obtained from this study can contribute to an improvement of load considerations in shield lining design.

Key words: shield tunneling, earth pressure, stiffness ratio of ground to segment lining, construction load

CLC Number: 

  • U 455.43
[1] ZHANG Ding-wen, LIU Zhi-xiang, SHEN Guo-gen, E Jun-yu, . Measurement of earth pressure of shallow buried tunnel with super large diameter and applicability evaluation of calculation method [J]. Rock and Soil Mechanics, 2019, 40(S1): 91-98.
[2] HUANG Da-wei, ZHOU Shun-hua, FENG Qing-song, LUO Kun, LEI Xiao-yan, XU You-jun, . Analysis for vertical earth pressure transference on overlaying soils of shield tunnel under uniform surface surcharge [J]. Rock and Soil Mechanics, 2019, 40(6): 2213-2220.
[3] MO Zhen-ze, WANG Meng-shu, LI Hai-bo, QIAN Yong-jin, LUO Gen-dong, WANG Hui, . Laboratory investigation on pore water pressure variation caused by filter cake effect during slurry-EPB shield tunneling in silty sand layer [J]. Rock and Soil Mechanics, 2019, 40(6): 2257-2263.
[4] CHEN Jian-xu, SONG Wen-wu, . Non-limit active earth pressure for retaining wall under translational motion [J]. Rock and Soil Mechanics, 2019, 40(6): 2284-2292.
[5] RUI Rui, YE Yu-qiu, CHEN Cheng, TU Shu-jie. Nonlinear distribution of active earth pressure on retaining wall considering wall-soil friction [J]. Rock and Soil Mechanics, 2019, 40(5): 1797-1804.
[6] SHAO Sheng-jun, CHEN Fei, DENG Guo-hua, . Seismic passive earth pressure against the retaining wall of structural loess based on plane strain unified strength formula [J]. Rock and Soil Mechanics, 2019, 40(4): 1255-1262.
[7] ZHU Jun-gao, JIANG Ming-jie, LU Yang-yang, JI En-yue, LUO Xue-hao, . Experimental study on influence of stress state on at-rest earth pressure coefficient for coarse grained soil [J]. Rock and Soil Mechanics, 2019, 40(3): 827-833.
[8] TANG De-qi, YU Feng, CHEN Yi-tian, LIU Nian-wu, . Model excavation tests on double layered retaining structure composed of existing and supplementary soldier piles [J]. Rock and Soil Mechanics, 2019, 40(3): 1039-1048.
[9] LIU Yang, YU Peng-qiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls [J]. Rock and Soil Mechanics, 2019, 40(2): 506-516.
[10] LIANG Bo, LI Yan-jun, LING Xue-peng, ZHAO Ning-yu, ZHANG Qing-song, . Determination of earth pressure by miniature earth pressure cell in centrifugal model test [J]. Rock and Soil Mechanics, 2019, 40(2): 818-826.
[11] ZHANG Ye-qin, CHEN Bao-guo, MENG Qing-da, XU Xin, . Stress mechanism and foundation contact pressure of high fill culvert under load reduction condition [J]. Rock and Soil Mechanics, 2019, 40(12): 4813-4818.
[12] TIAN Yu, YAO Yang-ping, LU De-chun, DU Xiu-li, . Cross-anisotropic Mohr-Coulomb criterion and formula of passive earth pressure based on modified stress method [J]. Rock and Soil Mechanics, 2019, 40(10): 3945-3950.
[13] JIANG Cheng-xuan, CHEN Bao-guo, MAO Xin-ying, SHE Ming-kang. Stress characteristics of high fill load-shedding culvert on flexible foundation [J]. Rock and Soil Mechanics, 2019, 40(1): 275-280.
[14] YIN Zhi-qiang, SHE Cheng-xue, YAO Hai-lin, LU Zheng, LUO Xing-wen,. Research on earth pressure behind row piles from clayey backfill considering soil arching effect [J]. , 2018, 39(S1): 131-139.
[15] LIU Mei-lin, HOU Yan-Juan, ZHANG Ding-li, FANG Qian. Research on active earth pressure of flexible retaining wall considering construction effect of foundation pit in sandy soil [J]. , 2018, 39(S1): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiao-wen,CHANG Li-jun,HU Xiao-rong. Experimental research of matric suction with water content and dry density of unsaturated laterite[J]. , 2009, 30(11): 3302 -3306 .
[2] HUANG Jian-hua,SONG Er-xiang. Research on mechanical properties of frozen curtain in large anchorage foundation pit engineering[J]. , 2009, 30(11): 3372 -3378 .
[3] WANG Guan-shi, LI Chang-hong, CHEN Bao-jun, LI Sh-ihai. Propagation law of stress wave in nonlinear structural surface medium[J]. , 2009, 30(12): 3747 -3752 .
[4] WANG Zhao-yang, XU Qiang, NI Wan-kui. Study of undisturbed loess stress-strain relation during CT test[J]. , 2010, 31(2): 387 -391 .
[5] DENG Qin,GUO Ming-wei,LI Chun-guang,GE Xiu-run. Vector sum method for slope stability analysis based on boundary element method[J]. , 2010, 31(6): 1971 -1976 .
[6] WAN Shao-shi, NIAN Ting-kai, JIANG Jing-cai, LUAN Mao-tian. Discussion on several issues in slope stability analysis based on shear strength reduction finite element methods (SSR-FEM)[J]. , 2010, 31(7): 2283 -2288 .
[7] YAN Tie, LI Wei, BI Xue-liang. Research on effective stress model in porous media based on fractal method[J]. , 2010, 31(8): 2625 -2629 .
[8] LIU Jia, WANG Dong. Tension resistance and suction of plate anchor foundation in normally consolidated clay[J]. , 2009, 30(3): 735 -740 .
[9] XU Wei-sheng, CHAI Jun-rui, CHEN Xing-zhou, SUN Xu-shu. Study of nonlinear noncubic seepage in netwok rock and its application[J]. , 2009, 30(S1): 53 -57 .
[10] ZHAO Shang-yi, ZHENG Ying-ren, LI An-hong, QIU Wen-ping, TANG Xiao-song. Application of multi-row embedded anti-slide piles to landslide of Wulong county government[J]. , 2009, 30(S1): 160 -164 .